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Nowadays, most of the NLP applications are dependent on the accurate 

morphological analysis of the basic language units: words. Root words, part-of-speech 

(POS) tags and morphological features are the basic units of a word. Morphologically 

complex languages like Turkish have rich feature sets. When combined with productive 

inflectional and derivational morphology, thousands of words can be produced from a root 

word and this leads to sparsity. Morphological analyzers are the tools that perform the 

morphological analysis of a word. They can produce multiple parses for a single word 

where this indicates ambiguity. Disambiguation is the removal process of ambiguity where 

it is a much complicated task for morphologically complex languages like Turkish. 

Although high accuracy values are obtained for the studies performed on this task, there is 

still a challenge. Sparsity and insufficiency of high volume supervised data is the cause of 

longer running times and accuracy loss. Recent studies for morphological disambiguation 

are generally presented on neural learning models. To our best knowledge, a 

disambiguation method which takes the advantage of training of words in a vector-space 

has not been proposed. Motivated by this shortcoming, in this thesis, we have developed 

and implemented a vector-space model that solves morphological ambiguity by locating the 

correct candidates of ambiguous words near to the unambiguous neighbors. The model, 

named learning word-vector quantization (LWQ), is an adaptation of a well-known learning 

algorithm, learning vector quantization (LVQ). LWQ outperforms the algorithms presented 

in the literature for the morphological disambiguation of Turkish.  

           

Key Words: Morphological disambiguation, Complex morphology, Learning vector 

quantization, Word vector, Ambiguity 
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 : Prof. Dr. Selma Ayşe ÖZEL 

 : Prof. Dr. Mutlu AVCI 

: Prof. Dr. Olcay Taner YILDIZ 

: Dr. Öğr. Üyesi Ali İNAN 
 

NLP uygulamalarının başarısı, dillerin temel birimi olan kelimelerin doğru 

biçimbirimsel analizine bağlıdır. Kökler, kelime türü etiketleri ve biçimbirimsel özellikler, 

bir kelimenin temel birimleridir. Türkçe gibi biçimbirimsel olarak karmaşık olan diller 

zengin özelliklere sahiptir. Türkçe’nin türetimsel olarak üretken yapısı gözönüne 

alındığında, bir kök kelimeden binlerce kelime üretilebilmekte ve bu durum seyrekleşmeye 

yol açmaktadır. Biçimbirimsel analizörler, bir kök kelimenin biçimbirim analizini yapan 

araçlardır. Biçimbirimsel analizörler, tek bir kelime için birden fazla ayrıştırma üretebilir ve 

bu durum ise belirsizliği göstermektedir. Belirsizlik giderme işlemi, Türkçe gibi morfolojik 

olarak karmaşık diller için oldukça zor bir işlemdir. Bu problemin giderilmesi için sunulan 

çalışmalarda yüksek doğruluk değerleri elde edilmiş olmasına rağmen, daha gidilecek yol 

vardır. Seyreklik ve yüksek miktarda denetimli verinin bulunmuyor olması, daha uzun 

çalışma sürelerine ve daha düşük doğruluk değerlerine sebep olabilmektedir. Son 

zamanlarda biçimbirimsel belirsizliklerin giderilmesi çalışmaları genellikle sinir öğrenme 

modelleri ile yapılmaktadır. Bildiğimiz kadarıyla, Türkçe için, kelimelerin vektör uzayında 

eğitilerek konumlandırılmasıyla biçimbirimsel belirsizliği gideren bir yöntem henüz 

önerilmemiştir. Bu eksiklikten hareketle, bu tezde, belirsiz kelimenin doğru adaylarını 

belirsiz olmayan komşuların yanına yerleştirerek biçimbirimsel belirsizliği çözen bir vektör 

uzay modeli geliştirilmiş ve uygulanmıştır. Sözcük vektörü nicelleştirme öğrenmesi (LWQ) 

adlı model, iyi bilinen bir öğrenme algoritması olan vektörel nicelleştirme öğrenmesi 

(LVQ)’nin bir türevidir. LWQ, literatürde sunulan diğer algoritmalara göre daha iyi başarı 

oranları elde etmektedir. 

 

Anahtar Kelimeler: Biçimbirimsel belirsizlik giderme, Karmaşık biçimbirim,  Vektörel 

nicelleştirme öğrenmesi, Kelime vektörü, Belirsizlik 
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EXPANDED ABSTRACT 

 

Turkish is an agglutinative language which has a productive character with 

inflectional and derivational morphology. In agglutinative languages, new word 

forms can be easily created by using stems and affixes. Words carry semantical and 

syntactical information in their internal structure. This information is valuable in 

advanced natural language processing (NLP) applications and must be exposed. 

Morphological analysis is a pre-processing step for NLP which identifies the 

grammatical structure of words. Finite state machines (FSM) are generally the 

main components of a morphological analyzer and their design varies according to 

the language’s grammar. Due to the large size of dictionaries and morphological 

features many analysis (parse outputs) can be provided by a morphological 

analyzer. Although morphological analyzers are improved with additional 

constraints, multiple parses of a word are often available for a word, which is stated 

as “ambiguity”.  

Especially, nearly half of the running text is ambiguous in Turkish. 

Inflectional morphology and large feature sets are the main causes of sparsity. 

Ambiguity is a barrier for further processing of texts in NLP applications and it 

should be solved. Morphological disambiguators are the tools that singularize the 

multiple parses provided by a morphological analyzer by selecting the correct parse 

solution. Morphological disambiguators implement disambiguation by taking into 

account the context of a target (ambiguous) word in a sentence or text. Nearly all of 

the studies performed for Turkish have used context information in their models by 

incorporating the neighboring information. Applying a conceptual window on the 

target word to detect its corresponding neighbors, is a general approach.   

Early studies on morphological disambiguation of Turkish has begun with 

constraint-based (Oflazer and Kuruöz 1994; Oflazer and Tür, 1997; Daybelge and 

Cicekli, 2007) approaches and pure statistical methods (Hakkani-Tür et al., 2002). 

The main drawback of using constraints in disambiguation is difficulty to handle 
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new or unknown words with the standard rule-sets. Statistical methods collect 

usage information of the data models (word n-grams) from the corpus and 

determine the most probable sequence to disambiguate a sentence. In the following 

years, hybrid (Kutlu and Cicekli, 2013) models have got more popular which 

achieves higher success by using the constraints with statistical information. Nearly 

a decade ago, machine learning methods (Sak et al., 2007; Yuret and Türe, 2006) 

has presented the state-of-the-art results. In recent years, neural network models 

(Dayanık et al., 2018; Shen et al., 2016; Yildiz et al., 2016) report promising 

accuracy values in morphological disambiguation. These models have the 

advantage of efficient computation and flexibility of modelling the words with 

context information in network layers. Nearly all of these use the same tagged 

datasets in their training cycles (Yuret and Türe, 2006). Although most of these 

algorithms are so successful, any implementation of morphological disambiguation 

with a classification method which applies a supervised reward-punish mechanism 

in a vector-space has not been proposed, to our best knowledge.  

Motivated by this shortcoming in the literature, we propose to develop, a 

vector-space model named learning word-vector quantization (LWQ), which is an 

adaptation of the learning vector quantization (LVQ). Although original LVQ 

algorithm has been successfully applied in some NLP research fields like text 

classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia et al., 

2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016), language 

identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005) and 

multi-word expressions recognition (Diaz-Galiano et al., 2004), it is not 

implemented on morphological disambiguation, in our knowledge. For this reason, 

we have adapted this algorithm specifically for this task, by treating it as a 

classification problem.  

In this thesis, first, we have built the necessary tools and materials. These 

are necessary to improve a morphological analyzer and prepare a tagged dataset 

with a web tool. Second, we have developed the LWQ classification model and 
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trained it with this dataset to optimize the exact locations of the words in space. We 

believe that words without ambiguity should reside in near locations with the 

correct parse candidate of an ambiguous word. When the locations of the words are 

fixed at the end of the training phase, a classification test is applied to disambiguate 

the ambiguous words. To our best knowledge, this is the first implementation of 

this technique. 

The experimental results show that the proposed technique gives promising 

accuracy values in morphological disambiguation. Although we have used a 

limited dataset, training with a larger dataset can contribute to success. In the study, 

accuracy results are presented with various experiments and data consistency is 

additionally investigated. 
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GENİŞLETİLMİŞ ÖZET 

 

Türkçe türetimsel ve çekimsel biçimbirimine sahip sondan eklemeli bir 

dildir. Sondan eklemeli dillerde kökler ve ekler kullanılarak kolaylıkla yeni 

kelimeler oluşturulabilmektedir. Kelimeler iç yapılarında anlamsal ve sözdizimsel 

bilgiler içermektedirler. Bu bilgiler doğal dil işleme (DDİ) uygulamalarında değerli 

olmaları sebebiyle açığa çıkartılmalıdır. Biçimbirimsel analiz, sözcüklerin gramatik 

yapılarının tespit edildiği bir DDİ ön işlemidir. Sonlu durum makinaları (SDM) bir 

biçimbirimsel analizcinin temel yapıtaşlarıdır ve tasarımları uygulandığı dillerin 

dilbilgisine göre değişiklik göstermektedir. Bir biçimbirimsel analizci sözlüklerinin 

büyük olması ve özellik sayısının fazlalığı sebebiyle birçok analiz çıktısı 

oluşturabilmektedir. Her ne kadar biçimbirimsel analizciler birçok kısıtlayıcı 

kurallar kullanılarak geliştirilmiş olsalar da, bir kelimenin birden fazla analizi 

sözkonusu olabilmektedir ve bu duruma “belirsizlik” adı verilmektedir.   

Neredeyse Türkçe olarak kullanılan metinlerin yarısı belirsizlik 

içermektedir. Çekimsel biçimbirim ve fazla özellik içeren özellik kümeleri 

seyrekliğin temel sebeplerinden biridir. Belirsizlik ileri DDİ uygulamalarına 

geçebilmek için bir engeldir ve çözülmesi gerekmektedir. Biçimbirimsel belirsizlik 

gidericiler bir biçimbirimsel analizcinin sunduğu birden fazla çözüm içinden doğru 

çözümün bulunması için kullanılan araçlardır. Biçimbirimsel belirsizlik gidericiler 

bir cümledeki ya da metindeki bir sözcüğün bağlamını gözönüne alarak hedef 

(belirsiz) kelimenin belirsizliğini gidermektedirler. Türkçe için bu konuda yapılan 

çalışmaların neredeyse hepsi tasarımlarında komşuluk ilişkilerinin kullanıldığı 

bağlam bilgisinden faydalanmaktadırlar. Komşularının tespiti için hedef kelimeye 

kavramsal bir pencere uygulanması genel bir yaklaşımdır.    

Türkçe’nin biçimbirimsel belirsizlik gidermesi üzerinde ilk yapılan 

çalışmalar kural tabanlı (Oflazer ve Kuruöz 1994; Oflazer ve Tür, 1997; Daybelge 

ve Cicekli, 2007) ve istatistiksel (Hakkani-Tür vd., 2002) olarak sunulmuştur. 

Belirsizlik gidermede kural tabanlı yaklaşımları kullanmaktaki temel sorun, yeni 
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veya bilinmeyen kelimelerin standart kural tablolarıyla tespitinin zor olmasıdır. 

İstatistiksel yöntemler veri modellerinin (n-gramlar) derlemlerdeki kullanım 

bilgilerini toplayarak, cümledeki belirsizliği gidermek için en olası dizilimi 

belirlemektedir. Takip eden yıllarda, kural tabanlı ve istatistiksel yöntemleri 

kullanarak yüksek başarılar sağlayan hibrid (Kutlu ve Cicekli, 2013) modeller 

önem kazanmaya başlamıştır. Yaklaşık on yıl kadar önce sunulan makine 

öğrenmesi yöntemleri (Sak vd., 2007; Yuret ve Türe, 2006) en yüksek başarı 

değerlerini sunmuştur. Yakın zamanlarda belirsizlik giderme için sunulan sinir ağ 

modelleri (Dayanık vd., 2018; Shen vd., 2016; Yildiz vd., 2016) umut verici 

doğruluk değerleri sunmuşlardır. Bu modeller, sinir ağlarında kelimelerin bağlam 

bilgisiyle beraber verimli bir şekilde modellenmesine olanak sağlamaktadırlar. Bu 

modellerin neredeyse hepsi aynı etiketli verisetini (Yuret ve Türe, 2006) 

kullanmaktadırlar. Bu çalışmaların çoğu oldukça başarılı sonuçlar sunmuş 

olmalarına rağmen, bildiğimiz kadarıyla, kelime uzayında denetimli olarak ödül-

ceza uygulaması yapan bir belirsizlik giderme işlemi yapılmamıştır.      

Literatürde bulunan bu eksiklik göz önüne alınarak, bu çalışmada, vektör 

nicelleştirme öğrenmesi (LVQ) algoritmasından esinlenilerek, sözcük vektörü 

nicelleştirme öğrenmesi (LWQ) modeli geliştirilmiştir. LVQ algoritması, her ne 

kadar metin sınıflama (Umer ve Khiyal, 2007; Visa vd., 2000; Martín-Valdivia vd., 

2007; Pilevar vd., 2009), ses tanıma (Haldar ve Mishra, 2016), dil tanıma 

(Gunawan vd., 2017), spam tespiti (Chuan et al., 2005) ve çoklu kelime tanıma 

(Diaz-Galiano vd., 2004) gibi bazı DDİ araştırma alanlarında uygulanmış olsa da 

bildiğimiz kadarıyla biçimbirimsel belirsizlik gidermede bir uygulaması 

bulunmamaktadır. Bu sebeple, bu algoritma, belirsizlik giderme problemi için bir 

sınıflandırma bakış açısıyla değiştirilmiş ve yeni bir model olarak sunulmuştur. 

Bu tezde, öncelikle gerekli araçlar ve malzemeler hazırlanmıştır. Bunlar, 

bir biçimbirimsel analizcinin üzerinde geliştirme yapılması ve bir web aracı 

yardımıyla etiketli veri hazırlanması için gerekmektedir. İkinci olarak, LWQ adlı 

sınıflama modeli geliştirilerek veriseti ile eğitim yapılmış ve uzayda kelimelerin 
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gerçek konumları optimize edilmeye çalışılmıştır. Belirsizlik içermeyen kelimeler 

belirsiz kelimenin doğru adayının çevresinde bulunmaktadır. Eğitim sonunda 

kelimelerin uzaysal konumlarının sabit hale gelmesiyle belirsiz kelimelere bir 

sınıflandırma testi uygulanmakta ve belirsizlik giderilmektedir. Bildiğimiz 

kadarıyla, bu tekniğin ilk uygulaması bu çalışmada sunulmaktadır.  

Deneysel sonuçlar, çalışmada önerilen tekniğin biçimbirimsel belirsizlik 

gidermede umut verici doğruluk değerleri sağladığını göstermektedir. Sınırlı bir 

veri kümesi kullanılmış olmasına rağmen daha yüksek veri ile eğitim yapılması 

başarıyı arttırabilecektir. Bu çalışmada başarı değerleri farklı deneyler ile sunulmuş 

ve veri tutarlılığı ayrıca araştırılmıştır. 
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1. INTRODUCTION 

 

Turkish is a morphologically complex, agglutinative, free word order 

language. It is possible to derive infinite number of words by using a root and any 

number of morphemes (Hakkani-Tür et al., 2002). For advanced Natural Language 

Processing (NLP) applications, it is an essential task to morphologically analyze 

the words in texts (Dayanık et al., 2018). Morphological analysis is composed of a 

root, part-of-speech (POS) and morphological tags (i.e. morphemes).  

Morphological analyzers and part-of-speech (POS) taggers are the main 

tools that analyze a word morphologically. In terms of NLP, morphological 

ambiguity is the case that, when there exist multiple analyses as the outputs of 

these tools. Morphological ambiguities should be solved (i.e disambiguated) in 

order to perform further applications in NLP. Morphological disambiguation is the 

process of finding the correct parse when a word has multiple parses within the 

context to which it is bound (Dayanık et al., 2018). 

Morphological disambiguation can be achieved in two ways. In some 

cases, it is necessary to determine the POS tag for a root word or lemma. This 

process is called POS Tagging and it is helpful to determine the correct POS tag for 

a lemma provided by a lemmatizer tool. The other case is, to solve ambiguities 

given as output of a morphological analyzer. Morphological disambiguator tools 

have been developed to solve this problem. These tools, with various methods and 

perspectives, can detect the appropriate analysis, regarding the situation of the 

ambiguous word in the relevant context. POS tagging and morphological 

disambiguators are often used together because their output is somewhat the same. 

For example, the output of the POS tagging process is “lemma + POS tag”, while 

the output of the morphological analyzer is “lemma + POS + MF (Morphological 

Features”. The usage areas of the outputs may show similarities or differences. 

Conceptually, POS tagging and morphological disambiguation are acceptable at the 

same level in an NLP pipeline (Yildiz et al. 2016). But, for morphologically 
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complex languages POS tagging may not be enough and morphological 

disambiguation is performed directly on the output of a morphological analyzer. 

Morphological disambiguation studies have come up with various 

approaches. However, in recent studies, neural network based machine learning 

methods are preferred, which encode context information on word embeddings, 

instead of directly using a morphological analyzer output (Dayanık et al., 2018; 

Heigold et al., 2017; Yıldız et al. 2016). As a result of this preference, higher 

accuracy values are reported when compared to statistical and rule-based methods. 

Context information can be implemented locally or globally on the 

disambiguation process. Local application is provided by the addition of the local 

features of the ambiguous word by using a conceptual window. This is useful in 

enriching the information for a target word by using the local features of the 

neighboring words. This kind of window can be applied in one side (left or right) 

or two sides (both right and left) of the target word depending on the design. In the 

global sense, it is the use of words that are semantically similar, which co-occur in 

the same sentence or text.  

In literature, many studies presented for morphological disambiguation of 

Turkish benefit from windowing. In Yuret and Türe (2006) they use all the 

information of the words which reside in a five-word window. In Görgün and 

Yıldız (2011) and Yildiz et al. (2016), a three-word window is used which includes 

the two neighboring words to the left of the target word. In Dayanık et al., (2018)’s 

study one neighbor word from the left and right of the target word are used in 

encoding to the neural model. 

Morphological disambiguation of Turkish with classification techniques in 

vector-space has not been studied yet, in our best knowledge. Motivated by this 

shortcoming, in this study, we propose a classification method to solve the 

morphological ambiguity problem of the Turkish language. This method is an 

adaptation of the well-known machine learning algorithm called Learning Vector 

Quantization (LVQ) (Kohonen, 1984). LVQ is a competitive supervised neural 
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network, which is generally used for classification tasks. Inspired from the LVQ 

algorithm we have developed LWQ (by using a similar acronym) method and 

applied to morphological disambiguation problem. Basically, LWQ takes 

advantage of a vector-space to obtain the optimum locations of word-vectors by 

using a reward-punish mechanism. As mentioned before, words without ambiguity 

are helpful in determining the correct candidate of an ambiguous word (a word 

with ambiguity). In the inspiration of this idea, word-vectors are trained to assure 

that, unambiguous words are located near to the correct lemma candidate of an 

ambiguous word in the space. This requires a supervised tagged corpus where 

training datasets are prepared specially and word-vectors are obtained from the 

vocabularies of these datasets. Each data line in a dataset represents a single 

occurrence of an ambiguous word with its immediate unambiguous neighbors that 

are all in a pre-defined window. Lemma candidates of the ambiguous word that are 

in the data line are obtained from the morphological analyzer (Yıldız et al., 2019).  

All these candidates can be thought of a class and they are variable in the count 

because there is no limit in the distinct parses provided by a morphological 

analyzer. Original LVQ algorithm enables to design a model which is not limited to 

two classes. This advantage of LVQ is an inspiration used in the design of LWQ. 

LVQ is a three-layer neural network that is based on Kohonen Self 

Organizing maps and it is supervised. Basically, these are input, competitive 

(Kohonen) and output layers. Kohonen layer includes the codebook vectors where 

each of them represents a cluster in the space. The Euclidian distance of each input 

sample to each code vector is calculated and the nearest codebook vector wins the 

competition test. The winner codebook vector is always compared with the desired 

output and the weights are modified accordingly. LVQ is advantageous than the 

other classification methods in requiring fewer training examples, the ability to 

handle boundary values and being faster (Umer and Khiyal, 2007). In the literature 

there are several successful implementations of LVQ methods on NLP tasks such 

as text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia et 
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al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016), 

language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005) 

and multi-word expressions recognition (Diaz-Galiano et al., 2004).  

Our study is different from the original LVQ algorithm as follows. First of 

all, we do not use a neural network model although the logic is nearly the same. 

Lemma candidates of all ambiguous words in a dataset are represented as similar to 

codebook vectors of LVQ. Vector-space positions of the ambiguous lemma 

candidates are arranged according to the supervised knowledge in each data line of 

the dataset. Each data line represents a correct ambiguous lemma candidate 

together with the other candidates and their immediate neighboring. When training 

begins, a calculation is made for each ambiguous lemma candidate independently 

with the neighbor words (unambiguous words). The calculation with the lowest 

distance value is the selection of the LWQ system. It is compared with the correct 

lemma candidate (supervised), if they are consistent to be same, nothing is done. 

Otherwise, word-vector of the correct lemma candidate is approximated to the 

neighbor words while other candidates are departed in opposite directions. This 

iteration goes on till the convergence occurs. To evaluate our results, we have used 

the “accuracy” parameter in order to comply with the other studies implemented 

for Turkish morphological disambiguation in the literature. 

Since the proposed method can work on labelled data, there is a need for 

low noise and highly accurate dataset. There is a semi-automatically disambiguated 

dataset (about 1 million words) released in Turkish (Yuret and Türe, 2006) and 

most of the studies for Turkish (Sak et al. 2007; Shen et al., 2016; Yildiz et al. 

2016) use this dataset. While using this dataset, some of the preceding studies 

presented their work by applying various methods to reduce noise or preparing 

more reliable test sets. Because of the low reliability of the presented datasets for 

Turkish, we have prepared a manually disambiguated data by the help of a tagging 

tool and Expert. 
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1.1. The Aims and Objectives of This Thesis 

Morphological disambiguation is a challenging NLP problem that is more 

laborious and hard for morphologically complex languages like Turkish, Hungarian 

and Czech due to the richness of the tagsets and their inflectional character. When 

the case is Turkish, theoretically infinite number of words can be derived from the 

stems or lemmas in a dictionary. Generally, statistics of the local features of a word 

are enriched with the context information and used in the disambiguation models. 

This requires high volumes of training data and special data models for Turkish. 

Although recent disambiguation methods (Sak et al., 2017; Shen et al., 2016; 

Dayanık et al., 2018; Görgün and Yıldız, 2011) are quite successful, using word-

space in classification for morphological disambiguation is not well-studied. 

Therefore, the aim of this study is to develop a classification technique named 

Learning word-vector quantization (LWQ), which is an adaptation of the well-

known supervised machine learning algorithm, Learning vector quantization 

(LVQ). To achieve the best results, we aimed to take advantage of the LVQ 

algorithm which requires less training data, flexible in class numbers and function 

with a reward-punish mechanism.  

LWQ is similar to LVQ in optimizing the locations of word prototypes as 

input vectors but differs in some way. Training in LWQ is achieved by using the 

immediate neighboring of the ambiguous words (target words) which do not have 

ambiguity. This is not a new idea (Viterbi, 1967), where some of the successful 

studies (Hakkani-Tür, 2002; Sak et al., 2017) have established their base models on 

scoring parse sequences with disambiguated text which with words without 

ambiguity. Also, we have used the reward-punish mechanism in arranging the 

word prototypes in space. We believe that using this approach in morphological 

disambiguation contributes to the classification accuracy.  

 

 



1. INTRODUCTION                                                              Enis ARSLAN 

6 

1.2. Our Contribution 

Studies covered in this thesis aim to solve the morphological ambiguity 

problem of Turkish, which is a challenging task needed to focus on for further NLP 

studies. Thinking of the parse candidates of a word provided by a morphological 

analyzer as classes and their immediate neighbouring (which do not have 

ambiguity) as input words, we have developed a classification technique which 

selects the correct candidate of an ambiguous word. We name it Learning word-

vector quantization (LWQ), in the inspiration of the Learning vector quantization 

(LVQ) algorithm. Basic idea is to locate all words, as prototypes, in the vector 

space and train the system by considering the relationships of the parse candidates 

of an ambiguous word and their immediate neighbours. LWQ inspires the reward-

punish mechanism LVQ uses. In our knowledge, there is not any study in the 

literature, which uses the main ideas of LVQ in classification to solve 

morphological ambiguity.      

 

1.3. Thesis Organization 

This thesis is organized as follows: 

In Section 2, a literature overview of studies on morphological 

disambiguation of Turkish is provided. Methodologies are explained in detail and 

accuracy values are given. 

In Section 3, brief information is given for the materials and tools used in 

the study. Datasets presented for Turkish morphological disambiguation are 

reviewed with statistics.  Also, the dataset prepared for this study is given. At the 

end of the section, detailed information is given about the existing and developed 

tools used for the preparation of the dataset. 

In Section 4, the proposed LWQ algorithm is given in detail. Multiword 

tokenizer that is integrated to the morphological analyzer is explained. Out-of-

vocabulary (OOV) discovery framework is presented. 
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In Section 5, the experimental results of the presented algorithm are given 

and they are compared with the similar methods in the literature. 

Finally, in the Conclusion section, the advantages and disadvantages of the 

proposed methodology are discussed following the future outlook. 
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2. RELATED WORKS 

 

In this section, research on morphological disambiguation presented for 

Turkish is summarized.  Before the overview, it is better to focus on the 

morphological ambiguity problem of Turkish.  

Turkish is a morphologically complex, productive and inflectional 

language. For a natural language, word-parts (i.e. Morphemes) are the smallest 

meaningful units which can be a stem, a prefix or suffix. Morphologically complex 

languages carry syntactical and semantical relations in morphemes. To expose this 

information, a word should be analyzed by using a morphological analyzer. 

Analyzers are generally based on finite state machines (FSM) and many constraints 

special to the language. Morphological analyzers present all possible solutions of a 

word as parse lists, by applying all possible rules without considering the context.  

Due to the very large tag set of Turkish, theoretically, infinite number of 

words can be derived (Hakkani-Tür et al., 2002) and this leads to sparseness.  

Multiple parse solutions of a word indicate ambiguity and nearly half of the words 

in the running text in Turkish are ambiguous (Yuret and Türe, 2006). 

Morphological ambiguity should be solved by morphological disambiguation, for 

further NLP applications such as syntax and semantic parsing, word sense 

disambiguation, text-to-speech recognition, machine translation, spell checking, 

dependency parsing, text summarization, semantic role labeling, topic modeling 

and named entity recognition (NER). Some well-known examples of an ambiguous 

word (a word with ambiguity) are given in Table 2.1 and Table 2.2. 
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Table 2.1 Morphological analysis of the word “masalı” (Dayanık et al., 2018) 
Word Analysis output 

masalı masal+Noun+A3sg+Pnon+Acc 
masalı yaz. (write the tale.) 

masal+Noun+A3sg+P3sg+Nom 
babamın masalı (my father’s tale) 

masa+Noun+A3sg+Pnon+NomˆDB+Adj+With 
mavi masalı oda (room with blue table) 

 

In Table 2.1, the first two analyses have the same roots and POS tags as 

“masal” and “NOUN”, respectively. But they are different in being accusative or 

nominative and this tag difference causes a change in the meaning of the word. The 

third analysis has a different root as “masa” and analysis has a derivational 

boundary (DB) which means that a new word can be derived from the root with a 

different affix (or different tag sequence) (+With) and this new word is an 

adjective.    

 

Table 2.2. Morphological analysis of the word “dolar” (Yildiz et al., 2016) 
Word Analysis output 

dolar dolar +Noun +3sg +Pnon +Nominative 
on milyon dolar borcu var (has a debt of ten 
million dollars) 

dola +Verb +Positive +Aorist +3sg  
ayağına dolar (she wraps to her foot) 

dol +Verb +Positive +Aorist +3sg  
bardak dolar (cup fills) 

do +Noun +3pl +Pnon +Nominative Multiple  
müzik notası (musical note) 

 

In Table 2.2, analysis of the foreign word “dolar” can be seen. There are 

four different roots as “dolar”, “dola”, “dol”, “do”. It is a good point to imply the 

second and third analyses where they have the same tag sequence as “Verb 

+Positive +Aorist +3sg”, a new word with a different meaning can be derived by 

using the roots “dola” and “dol”. There is no limitation in analyze count of a 
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morphological analyzer, where derivation starts with all the possible words and 

corresponding POS tags listed in the dictionary, and FSMs increase the analysis 

count and sparsity by considering all the possible paths in automatas.   

As mentioned before, when the morphological analyzer outputs a single 

parse, the term is not ambiguous and when there is more than one candidate root 

word or lemma in multiple parses, it can be said that the target word is ambiguous. 

In this study “unambiguous word” term will be used for the words without 

ambiguity and the “ambiguous word” term will be used for the ambiguous ones. As 

an example, morphological analyzer generates one candidate lemma as “arabacı + 

NOUN” for the word “arabacım”. On the other hand, two candidate lemmas can be 

produced for the ambiguous word “kalemi” as “kale + NOUN” and “kalem + 

NOUN”.  Morphological analyzers or lemmatizers can only produce outputs 

including roots, POS tags, morphological features (tags) without considering the 

context of the target word. In order to resolve this kind of ambiguities, it is 

essential to incorporate neighboring words of the target word in a text. Therefore, if 

we consider each word in the text as a word-vector and each word-vector as a point 

in space, dividing all points into two groups as “ambiguous” and “unambiguous” 

may be useful in the disambiguation analysis. 

2.1. Morphological Disambiguation of Turkish 

Morphological disambiguation studies on agglutinative languages are 

generally examined in four categories as rule-based, statistical, hybrid and machine 

learning. Recent studies have been introduced on deep learning methods and 

competitive results have been obtained when compared to the previous studies.  

Previous studies for the Turkish language are based on rule-based (Oflazer 

and Kuruöz 1994; Oflazer and Tür, 1997; Daybelge and Cicekli, 2007) and 

statistical methods (Tür et al., 2002). Sometimes statistical methods can be used 

together with machine-learning methods being called hybrid methods (Kutlu and 

Cicekli, 2013). In the study, they have reported an accuracy rate of 93.4% in 
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morphological disambiguation using statistical data and handcrafted rules on a 

dataset they created. 

In the later studies, morphological disambiguation success is improved by 

using machine learning methods and better results are obtained according to the 

rule-based and statistical methods. In morphological disambiguation, the results 

reported in Sak et al.’s (2007) study is considered state-of-the-art for Turkish. In 

the study, a multilayer perceptron method, which votes n-gram models (Hakkani-

Tür et al., 2002) is presented with a success rate of 96.8%. When the same train 

and test sets are used, this study overperformed with the value of 95.93% when 

compared with the studies of Hakkani-Tür et al. (2002) and Yuret and Türe (2006).  

Early work (Oflazer and Kuruöz, 1994; Oflazer and Tür, 1996; Oflazer and 

Tür, 1997, Daybelge and Cicekli, 2007) on disambiguation is frequently presented 

as rule-based approaches. These work rely on hand-crafted rules which generally 

suffer from generality problem. Oflazer and Kuruöz, (1994)’s study is the earliest 

study which uses constraint grammar approach by checking a target word’s 

agreement with the syntactic and positional restrictions. Although this study 

achieved reasonable results, the constraints were hand-crafted and further 

improvement was impossible. In another study (Oflazer and Tür, 1996), they have 

proposed a constraint-based approach that is capable to learn rules and statistics 

from the corpus in an unsupervised way. The hand-crafted rules are language 

independent. The process begins by applying the standard set of choose-delete 

hand-crafted rules to the untagged corpus. While this procedure provides a level of 

decrease in ambiguity, additionally, a learning mechanism works to induce more 

choose-delete rules specific to the target language. Following this procedure, the 

disambiguation procedure is as: the standard set of rules is applied to the same 

untagged corpus, some parses are deleted by using context statistics and finally, the 

newly learned rules are applied. In the study, they report a 96 to 97% accuracy in 

disambiguation. Voting constraints (Oflazer and Tür, 1997) is another rule-based 

approach where each rule has several constraints and a vote point. Voting is 
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achieved by giving high points to the most specific rules which have a high number 

of constraints, the constraints with a high number of features, which have reference 

to specific features. Rules are applied independently to all parses in the tokens of a 

sentence. If a parse matches, all the constraints of a rule and the vote value is 

incremented. Disambiguation is performed by selecting the highest-scoring parse 

by considering the lowest scoring in a calculation.         

An example of a hybrid approach (Kutlu and Cicekli, 2013) incorporates 

statistics and constraints to their model in order to solve morphological ambiguity. 

Their system includes two stages as training and disambiguation. Training corpus 

is used to compose word and suffix tables which hold the most likely parses of the 

words and suffixes according to their frequency values. All words in the training 

corpus are pre-tagged by using these tables. A modified Brill tagger learns the 

disambiguation rules from the corpus with many iterations by applying ten-fold 

cross-validation. Disambiguation is achieved by using the statistics in word and 

suffix tables, hand-crafted rules, rules learned by Brill tagger and heuristics. 

Accuracy rate obtained by using this approach is given as 93.4%. When the final 

IG of the word is considered, it reaches to 94.1%.         

In statistical approaches, a probabilistic model is trained by using labeled 

or unlabeled data and this model is used to tag a new text. The most well-known 

study (Hakkani-Tür et al., 2002) for Turkish, which has a statistical approach 

presents trigram models by splitting the words into inflectional groups (IG) to 

handle data sparseness problem. In the study, they have developed and tested four 

models. Hidden Markov models (HMM) technique is used to model the 

morphological parses in a sentence by maximizing the posterior probability to 

estimate the variables. The first model assumes that the root of a word is dependent 

on the roots of the previous two words and at the same time the IG of the word 

depends on the final IGs of the previous two words. The second model is the same 

as the first model, except that, the last IG of the target word is dependent on the 

previous IG of the same word. The third model has the same assumptions with the 
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second one, except that, the IG of a target word is independent of the last IGs of the 

previous words. The last model is a Naïve Bayes model which assumes that the 

previous two words’ IGs are independent of each other. In the training phase, two 

types of probabilities are calculated independently from the training data as root 

and IG probabilities. Two trigram models are used to estimate the root and IG 

probabilities, and in runtime, a combination of these models and test data is used to 

estimate the best sequence by using the Viterbi algorithm (Viterbi, 1967).  They 

have acquired the best accuracy value for the first model (93.95%) and the worst 

value for the Naïve Bayes model as 88.85%. When errors of semantic features are 

ignored, the accuracy increases to 95.07%.   

Yuret and Türe (2006) propose a machine learning method, which 

combines the rule-based methods with statistics. They have composed 126 distinct 

decision lists for every 126 morphological features. Training subsets are selected 

from 1 million training instances which consist of each morphological feature at 

least once in their corresponding parse. Following that, these sets are divided into 

two groups (positive and negative) where one group includes the morphological 

feature in the correct parse and the other would not. Training starts with an empty 

decision list and a default rule. Greedy Prepend Algorithm (GPA) applies a 

window of size four by centering the target word. Although they have tried bigger 

window sizes, there was no significant improvement in accuracy. Rule patterns are 

discovered for each target word for each morphological feature. The rules are 

ordered in a way that the decision list is ordered from the most specific rule to the 

most general. GPA prepends each rule with the maximum gain to the top of the 

lists. Gain is defined by the correct classification ratio while the rules prepend to 

the lists. Convergence happens when there is no rule to be added to the lists.  

Disambiguation is achieved by the product of decision list prediction possibilities 

of each tag in the parse. This methodology is advantageous to handle unknown 

words as being free of a dictionary. They have overcome data sparseness problem 
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by composing a single list for each morphological feature instead of processing 

many tags. Accuracy reported in this study is given as 95.82%. 

Another study (Sak et al, 2007), proposes a method, a variant of the 

Perceptron algorithm which is a well-known machine learning method. They 

model an ambiguous word into morphemic units, which consist of the roots and the 

morphosyntactic tags. Their statistical baseline model is the same as in (Hakkani-

Tür et al., 2002). They have created various templates in this way, as the features to 

be used in the perceptron algorithm. Perceptron learns weights for each instance by 

estimating a parameter vector. Here, the input variables are the set of sentences 

where the outputs are the parse sequences. For each input instance, the algorithm 

finds the highest scoring candidate. If it is not the correct parse candidate it updates 

the parameter vector by taking the difference of the correct candidate with the 

highest scored one and increasing the parameter for the correct candidate. They 

have split the dataset as training, development, and test where the training set is 

used for parameter estimation and development test is used for feature extraction. 

In the testing phase, they have used the same corpus used in (Yuret and Türe, 

2006) and they have achieved an accuracy value of 96.45% by using the same 

manually disambiguated test sets in (Hakkani-Tür et al., 2002; Yuret and Türe, 

2006). 

In Görgün and Yıldız (2011)’s study, morphological disambiguation 

problem is defined as a multi-class classification problem. It is aimed to detect the 

correct parse from N candidates of a word by ignoring the root words. Each distinct 

parse is a class. The input set is composed of the feature sets of the two previous 

neighbors and the correct class of the target word. Each feature set has 126 

morphological features. The training set includes 1 million disambiguated tokens 

with 50,673 sentences. Experiments are conducted for many classification 

algorithms. They have achieved an accuracy value of 95.61% with the J48 tree 

classifier slightly better than the baseline trigram model (Hakkani-Tür et al., 2002).  
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As an example of neural models, Yıldız et al. (2016) proposed a general-

purpose morphological disambiguation method and presented a Convolutional 

neural network (CNN) in deep learning architecture that can be used for 

morphologically rich languages. The neural network consists of two input layers 

and one output layer. The first input layer includes word representations as 

embeddings of roots and features. The second input layer incorporates the context 

knowledge obtained from an n-word window, into the first layer embeddings. The 

output layer, which is a softmax layer, calculates a classification score. In the 

training set, the correct parse sequences in a three-word sized window are labeled 

as positive whereas others are as negative. Stochastic gradient descent is used as 

the training algorithm and AdaGrad for optimization. Because the network learns 

as three-word windows, in inference time, all the calculations are made on the 

neural network for three-word sequences. Morphological disambiguation is 

achieved by using the Viterbi algorithm to select the best parse from the sentence 

sequences. They have used the same dataset with Yuret and Türe (2006) and 

manually tagged 20K of the tokens in the dataset to mitigate noise originating from 

semi-supervised data. In this study, 85.18% accuracy rate was achieved for Turkish 

which is higher than Sak et al. (2017) and Yuret and Türe (2006) as, 82.13% and 

83.31%, respectively. The accuracy rates of these two studies appear to be low 

when compared to their own studies, although they have used the same training set. 

This is because they were tested with the test set prepared specifically for the study 

of Yıldız et al. (2016).  

A recently introduced study (Dayanık et al., 2018), MorphNet, combines 

morphological analysis with a disambiguation model by using a sequence-to-

sequence recurrent neural network. Long Short Term Memory (LSTM) encoders 

are used to encode three different embeddings. The first one (word encoder) 

produces character-based embeddings by modeling the root of the target word as 

character sequences and the tags as single units. The second encoder (word 

encoder) encodes the previous and next neighbors of the target word by using bi-
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directional LSTM to incorporate the context information to the model. The third 

LSTM encoder (output encoder) is used to produce the embeddings by using the 

analysis of the previous words, ignoring their roots. Decoder has two hidden LSTM 

layers where the first layer includes the context information and the second layer 

encodes the word and output embeddings. The decoder uses its hidden layer and 

three encoders to learn and predict the correct output for the target word. In the 

study, a new dataset named TrMor2018 is presented which is 97%+ accurate. They 

state that the previously presented datasets have low accuracy because of the noise. 

They have tested their morphological disambiguation model with TrMor2018 and 

with the previous datasets. The highest accuracy is acquired with the TrMor2018 

dataset as 98.30% and the accuracy of the test with TrMor2006 was 96.86%.  

Shen et al. (2016), have introduced a bi-LSTM model which produces two 

kinds of embeddings. The first embedding type is produced by using two different 

bi-LSTMs to separately embed the root and the morphemes. These two 

embeddings are concatenated with tanh function to produce the final embedding. 

Another embedding type is context embedding, it can be produced in two different 

methods. The first method (local) depends on the left and right neighbors of the 

target word and the second method (global) uses all words in the sequence to 

embed the context information. Finally, a softmax is used to combine the word 

embeddings and context embeddings. Test results for the local context model and 

global context model are 96.90% and 97.24%, respectively, which is slightly 

higher than the state-of-the-art (Sak et al., 2007, 96.80%). 

 

2.2. Learning Vector Quantization (LVQ) and NLP 

LVQ algorithm has been successfully applied in some NLP research fields 

like text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia 

et al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016), 

language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005) 

and multi-word expressions recognition (Diaz-Galiano et al., 2004). 
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Martín-Valdivia et al. (2007) have applied LVQ to two tasks as text 

categorization and word sense disambiguation (WSD). They have used REUTERS-

21578 dataset for text categorization and SENSEVAL-3 corpus for WSD. The 

Kohonen layer they use doesn’t have hidden units but the network has one input 

and one output layer. When they modelled LVQ for text categorization, inputs are 

represented as terms in the documents and outputs of the network are categories. 

They have composed of different networks for each context. The model they have 

used for WSD has outputs as word senses. Umer and Khiyal (2007) use five 

different variants of LVQ to classify the texts and researched the best performing 

one. The tests between the LVQ variants are evaluated as 10-fold cross-validation. 

Each LVQ variant provide similar results and their training times are near. But the 

variant named OLVQ1 gives the best result. Performance of OLVQ1 is measured 

with different classification algorithms in 5-fold cross-validation and OLVQ1 

outperforms the k-NN, C4 and Naive Bayes algorithms in both classification 

accuracy and running time. In (Pilevar et al., 2009), they have used LVQ for text 

classification purpose. They have used a text collection of 1050 story news as 

dataset and evaluated their tests for LVQ1, OLVQ1, LVQ 2.1, LVQ3 and OLVQ3 

LVQ variants. OLVQ3 was compared with KNN and SVM algorithms and they 

have reported that, LVQ outperforms these two classification algorithms in both 

classification and time performance.   

LVQ also has research in speech-recognition. In (Mantysalo et al., 1992) 

they have used LVQ method for Finnish speaker-dependent speech-recognition.  In 

the study, they have aimed to measure the effect of high dimensions of context 

vectors which represent the phoneme set of Finnish. The context vectors were 

obtained by concatenating and averaging features in a time-domain. 99% of 

accuracy value was obtained when short-time feature vectors were used. Also they 

have realized that using high-dimensions as codebook vectors has positive effect 

on accuracy. Haldar and Mishra (2016) have used LVQ for multi-lingual speech 

recognition and language identification of English and Indian languages. They 
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have acquired a recognition rate between 88% and 90%. Gunawan et al. (2017) 

presented a study for language identification of Arabic, Malay and Thai languages. 

LVQ was preferred for its low complexity and computational costs and trained 

with spectral frequencies. They have reported the recognition rate as 73.8%. Chuan 

et al. (2005) have used LVQ algorithm for identifying spam emails. In the study, 

LVQ algorithm provides a recall rate between 93.58% and 96.86% with 1500 times 

training. LVQ outperforms Bayes-based approach. Diaz-Galiano et al. (2004) used 

LVQ for multiword expression recognition and trained LVQ with CLEF 2001 

database. They have acquired high precision values for information retrieval task. 
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3. MATERIALS 

 

In this study, a morphological disambiguation framework is prepared 

which follows steps from data preparation to training and testing. This framework 

is a combination of several different tasks and materials. The block diagram of this 

structure is given in Figure 3.1.  

 

 
Figure 3.1. The block diagram of the system model of the study 

 

The morphological analyzer (Yıldız et al. 2019) is the main tool used in the 

diagram shown in Figure 3.1. This analyzer uses a standard tokenizer which treats 

each word as a single token. However, this kind of analysis ignores the compound 

words or other multi-words in the sentences and this leads to more ambiguity by 

producing redundant parses. A better solution to this problem is to develop and 

integrate a “multi-word tokenizer”. In this way, words in a sentence with spaces 

between them can be recognized as multi-word tokens. Moreover, the 

morphological analyzer dictionary (especially in terms of non-existing n-grams, 

compound words) is updated using the dictionary data of “Güncel Sözlük” 

published by the Turkish Language Association (TLA) to decrease out-of-

vocabulary (OOV) rate.  

Steps shown in Figure 3.1 begin with tokenization. We have developed a 

multi-word tokenizer and integrated it into a morphological analyzer. A sample 

sentence is given below: 

 

“Öğrenci kalemi masasından alarak koşar adım tahtaya doğru yürüdü.” 
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After the processing of the multi-word tokenizer the tokens in the sentence 

will be as: 

 

“Öğrenci” “kalemi” “masasından” “alarak” “koşar adım” “tahtaya” 

“doğru” “yürüdü” 

 

The tokens are analyzed in the morphological analyzer and parse outputs 

are grouped in the output as “lemma + POS”. After this process the parse groups 

will be as: 

 

“öğrenci+NOUN” (“kalem+NOUN”,”kale+NOUN”) “masa+NOUN” 

“al+VERB” “koşar adım+ADV” “tahta+NOUN” “doğru+ADV” “yürü+VERB” 

 

These parse groups are stored in a NoSQL database in JSON format, 

maintaining their relations in the sentences and texts. The main purpose of using a 

morphological analyzer in this framework is to define which word is ambiguous 

and identify its lemma candidates. The two steps are implemented as a batch job 

and it can be thought of as a pre-processing step before tagging. In the third step, 

these pre-analyzed sentences are introduced to an Expert with the help of a tagger 

tool (which is developed in this study). After Expert tagging the disambiguated 

sentence will be as: 

 

“öğrenci+NOUN” “kalem+NOUN” “masa+NOUN” “al+VERB” “koşar 

adım+ADV” “tahta+NOUN” “doğru+ADV” “yürü+VERB” 

  

Expert freely tags the tokens listed by the program. The expert can change 

the lemma of the token if it is incorrectly lemmatized by the morphological 

analyzer. When an ambiguous word token is considered, Expert lemmatizes it with 

the correct POS tag and lemma, in this way disambiguates. All the actions of the 
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Expert are updated on JSON structures retrieved from the database. In the fourth 

step, a special format of the dataset is prepared for each text, including a line for 

each ambiguous word. In the fifth step, in order to solve ambiguities, this new 

dataset is used in Learning Word-vector Quantization (LWQ) algorithm, to 

compose word-vectors and train. Finally, the test accuracy of the LWQ method is 

measured and interpreted by using a disambiguated dataset. 

Details of the materials used in the framework are given in the following 

sections. LWQ is developed in the inspiration of a well-known algorithm LVQ. 

Because of that, details about the original LVQ algorithm and its variants in the 

literature are also given below. 

 

3.1. LVQ (Learning Vector Quantization) Algorithm 

LVQ algorithm is a reinforcement learning algorithm which is developed 

by Kohonen (Kohonen, 1984) to solve the classification problems. There are 

variations for the LVQ algorithm. These are LVQ1 (Kohonen, 1984), LVQ2 

(Kohonen, 1990a; Kohonen 1990c), LVQ3 (Kohonen, 1990b), OLVQ1 (Kohonen, 

1992), LVQ Algorithm with Penalization Mechanism (De Sieno, 1988) and LVQ-

X (Öztemel, 1992) Algorithm. 

 

3.1.1. LVQ1 Algorithm (Kohonen, 1984)  

The main purpose of the LVQ algorithm is to represent a set of input vectors 

with a set of reference vectors. Learning process is used to decide which input 

vector belongs to which reference vector class. Output values are decided in a 

“winner takes all” strategy. 

Learning process is implemented on an LVQ network with 3 layers. These 

are: 
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 Input Layer: The samples used for training exist in this layer. No 

processing occurs here. 

 Kohonen Layer: This is the intermediate layer which keeps the 

processing elements. These elements are represented by reference 

vectors which consist of the weight values obtained by mapping of the 

input vectors in the Input Layer 

 Output Layer: This layer is used to identify the class of the input. 

 

 The topology of the LVQ network is shown in Figure 3.2.  

 

 
Figure 3.2. LVQ network model (Öztemel, 2012) 

 

As seen in Figure 3.2, all processing elements of the input layer are 

connected to the processing elements of the Kohonen layer. On the other hand, 

some of the elements of the Kohonen layer are connected to a single element in the 

Output layer. Each element of the Kohonen layer belongs to one class. The weight 

values (α) between the Kohonen layer and the Output layer are binary values (0,1) 

and cannot be changed. In each iteration of the training processing, elements in the 
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Kohonen layer race each other. The procedure for the LVQ network is as (Öztemel, 

1992): 

 

1. Define the samples 

2. Define the network topology 

3. Define the network parameters, i.e. learning rate 

4. Define the initial weight values 

5. Take a sample from the input set and direct to the network 

6. Find the winning processing element 

7. Change the weight values 

8. Repeat steps (5-7) until all the samples are classified correctly 

 

The performance of an LVQ network is dependent on the count of the 

reference vectors, starting values and the adjustment of the learning rate. These are 

all defined by experience and there are no rules. Learning rate should descend till 

zero. Learning rule of the LVQ network is called Kohonen learning rule. Basically, 

it depends on the racing of the elements in the Kohonen layer. The race starts with 

the calculation of the weight values between the input elements and racing 

elements by using Euclidian distance as in (3.1).   

 

𝑑𝑖𝑠𝑡𝑖 = |𝑉𝑖 − 𝑋| =  √∑(𝑉𝑖𝑗 − 𝑥𝑗)
2

𝑗

 
(3.1) 

  

Where Vij and xj represent the weight vector of the reference vector and the 

input vector for the value j respectively. This distance value (dist) is calculated for 

all the reference vectors. The lowest value for dist represents the nearest reference 

vector to the input vector. This reference vector for the processing element is the 
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winner and only its weight values are recalculated in the recent iteration. The 

recalculation rule is as follows: 

 

 Winner processing elements belong to the correct class. When this happens 

the weight values are approximated to the input vector as in the following 

formula 3.2. 

 

𝑉𝑦 = 𝑉𝑒 + 𝜆(𝑋 − 𝑉𝑒) (3.2) 

  

 Winner processing elements belong to the incorrect class. When this happens 

the weight values are approximated to the input vector as in Equation 3.3. 

 

𝑉𝑦 = 𝑉𝑒 − 𝜆(𝑋 − 𝑉𝑒) (3.3) 

 

For both formulas in Eq. (3.2) and Eq. (3.3) λ is the learning rate, Ve is the 

current value of the reference vector, Vy is the next value of the reference vector 

and X is the input vector. As seen in Fig 3.3 nearest reference vector to the input 

vector X is V1.  

 
Figure 3.3. Nearest vector to the input vector (Öztemel, 2012) 
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Fig 3.4 shows the steps for the approximation of vectors X and V1. As the 

learning rate decreases by the following iterations, it converges to 0. This situation 

is represented in Fig. 3.4. 

 

 
Figure 3.4. Approximation of the input vector to the reference vector (Öztemel, 

2012) 

 

When this parameter gets the 0 value, the network overtrains and forgets 

what it learns. Also sometimes the same reference vectors over wins. There are 

also problems with boundary values. These disadvantages for the standard LVQ 

algorithm (LVQ1) can be overcome by different adaptations of the algorithm as 

described in the following section.  

 

3.1.2.  LVQ2 Algorithm (Kohonen, 1990a; Kohonen 1990c) 

LVQ2 algorithm was developed to prevent the incorrect classification 

which occurs in the boundaries of the classes. The idea is to update the weight 

values of the two vectors which are between the input vectors. There are two 

conditions to be met. When we call V1 and V2 as the nearest vectors to the input 

vector X; 

 

1. V1 is the nearest vector V2 is the second nearest vector and V1 belongs 

to the incorrect class and V2 belongs to the correct class. 
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2. X input vector resides between V1 and V2 in a window w 

 

When these two conditions are met, the new values of V1 and V2 are V1y 

and V2y respectively. The formulations for these calculations are shown in formulas 

3.4 and 3.5.  

 

𝑉1𝑦 = 𝑉1𝑒 − 𝜆(𝑋 − 𝑉1𝑒) (3.4) 

  

𝑉2𝑦 = 𝑉2𝑒 + 𝜆(𝑋 − 𝑉2𝑒) (3.5) 

 

where λ is the learning rate, V1e and V2e are the current values of the 

reference vectors. To guarantee the X input vector to be between the reference 

vectors, the condition in Formula 3.6 should be met. 

 

𝑀𝑖𝑛 (
𝑑1

𝑑2
,
𝑑2

𝑑1
) > 𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠 =  

(1 − 𝑤)

(1 + 𝑤)
 

(3.6) 

 

where d1 is the distance of the vector V1 and d2 is the distance of the vector 

V2 to the input vector X and w is the window length. An example of LVQ2, which 

shows the behavior of the reference vectors is shown in Fig 3.5. 

 

 
Figure 3.5. Schematic view of LVQ2 algorithm (Öztemel, 2012) 
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In Fig 3.5, it can be seen that vector V1 is going further and vector V2 is 

getting closer to input vector X. 

 

3.1.3.  LVQ3 Algorithm (Kohonen, 1990b) 

In the LVQ2 algorithm, vector V1 differentially changes in an uncontrolled 

way. To keep this vector approximate to the correct class distribution, the LVQ3 

algorithm is proposed. Additional to the conditions in LVQ2, when the closest 

reference vectors are in the same class, the formula for the calculation should be as 

in Equation 3.7. 

 

𝑉𝑘𝑦 = 𝑉𝑘𝑒 + 𝜀(𝑋 − 𝑉𝑘𝑒) 𝑓𝑜𝑟 𝑘 ∈  {1,2} (3.7) 

 

where 𝜀 parameter is constant and a value between 0.1 and 0.5 is proposed. 

This parameter gets smaller when the window gets narrower. LVQ provides the 

optimal place of the vector V1. 

 

3.1.4.  LVQ Algorithm with Penalization Mechanism (De Sieno, 1988) 

In the standard LVQ algorithm, some of the weight vectors win frequently 

and this leads to an unbalanced network. When this happens, some of the weight 

vectors are unable to be a reference vector for the input. Penalization mechanism 

proposed by De Sieno (1988) solves this problem by penalizing the frequent 

winner vector and prevents it to win recurrently. This mechanism runs by adding a 

b value to the distance (d) of this vector with the input vector. b value is 

determined by how many times the winner wins. The amount to be added to the d 

for the ith processing unit is determined by the Equation in 3.8.    

 

𝑏𝑖 = 𝐶(𝑝𝑖 +
1

𝑁
) 

(3.8) 
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𝑝𝑦
𝑖 = 𝑝𝑒

𝑖 + 𝐵(𝑦𝑖 − 𝑝𝑒
𝑖) (3.9) 

 

where, in Equation 3.8, C is a constant determined by the designer. N 

represents the processing element count in the Kohonen layer. And pi is the 

possibility of the ith element to win the race. The initial value of pi is 1/N and it is 

updated according to the rule in 3.9. 

In Equation 3.9, py is the new possibility, pe is the recent possibility value 

in order to win the race. B is a constant value and yi is the output value and 

calculated as in 3.10. 

 

𝑦𝑖 = {
1  𝐼𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑤𝑖𝑛𝑠
𝑂                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.10) 

  

In each iteration, b value is calculated for each processing element and 

added to the distance between this element and input reference vector as in 3.11. 

 

𝑑𝑦
𝑖 = 𝑑𝑒

𝑖 + 𝑏𝑖 (3.11) 

 

where de is the current distance, dy is the new value of the weight vector 

calculated according to the winning possibility. Race within the Kohonen layer 

occurs with the new distance values. Thus frequent winner is penalized and the 

other elements have the chance to win.   

 

3.1.5.  LVQ-X Algorithm (Öztemel, 1992) 

LVQ-X algorithm is another variant of the LVQ algorithm where it 

changes the value of the two weight vectors in each iteration. LVQ2 also changes 

two boundary vectors but this happens seldom. This algorithm is developed by 

Öztemel (1992) and provides shorter learning time and increases generality. This is 

achieved by determining two winning vectors in each iteration. These are: 
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 Global winner: Represents the nearest process element to the input 

vector. 

 Local winner: Represents the process element which belongs to the 

correct class and nearest to the input vector. 

 

𝑉𝑦 = 𝑉𝑒 − 𝜆(𝑋 − 𝑉𝑒) (3.12) 

 

𝑉𝑦 = 𝑉𝑒 + 𝜆(𝑋 − 𝑉𝑒) (3.13) 

 

When the global winner vector is incorrect class it gets further from the 

input vector as in 3.12. At the same time, the local winner vector gets closer to the 

input vector as in 3.13. 

 

3.2. Dataset 

In this section, brief information is given about the datasets used for the 

morphological disambiguation of Turkish. Also, detailed information is presented 

about the dataset prepared for this study. At the end of the section, details are given 

about the materials which are developed and used for the preparation of the dataset. 

Before going into the subsections, a summary of the training datasets used in 

morphological disambiguation of Turkish are given in Table 3.1  

 

Table 3.1. Training datasets used in  morphological disambiguation of Turkish 
Study Training 

Dataset 
Dataset Details 

Yuret and Türe (2006) TrMor2006 Yuret 
and Türe (2006) 

1 million words from 
semi-automatically 

disambiguated Turkish 
news text 

Sak et al. (2007) 

Görgün and Yıldız (2011) 

Yildiz et al. (2016) 

Shen et al. (2016) 

Dayanık et al. (2018) TrMor2018 
Dayanık et al. 

(2018) 

460,663 words from 
semi-automatically 

disambiguated Turkish 
news text 
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TrMor2006 dataset is extracted from 2,386 documents which include 

50,716 sentences. On the other hand, TrMor2018 dataset is extracted from 390 

documents which consist of 34,673 sentences. In our knowledge, most of the 

studies have used the TrMor2006 dataset and most of the time both as training and 

test datasets. Recently, TrMor2018 is presented and used in the same study 

(Dayanık et al., 2018) for morphological disambiguation.  

 

3.2.1. Statistics of the Datasets for Morphological Disambiguation of Turkish  

In the literature, various datasets for morphological disambiguation of the 

Turkish language are presented. The well-known datasets are TrMor2006 (Yuret 

and Türe, 2006), TrMor2016 (Yildiz et al. 2016) and TrMor2018 (Dayanık et al., 

2018) are produced and introduced as semi-supervised. TrMor2016 has the same 

train set as TrMor2006. But it includes a different test set. Statistics related to these 

datasets are given in Table 3.2. 

 

Table 3.2. Datasets prepared for morphological disambiguation of Turkish 
 (# of tokens) Ambiguous      Unambiguous Total 

Train Test Train Test Train Test 

 TrMor2006  398,290  379  439,234  483  837,524  862 

 TrMor2016  398,290  9,460  439,234  9,802  837,524  19,262 

 TrMor2018  215,024  21,477  243,866  25,166  458,890  46,643 

 

In Table 3.2, disambiguated Turkish datasets given in Table 3.1 are given 

in more detail with ambiguity situation and the amounts used for training or test.  

There is no data consistency of information regarding the datasets listed in Table 

3.2. For the recently presented TrMor2018 (Dayanık et al., 2018) dataset, 2,090 

sentences and 28,909 words are selected from the previous version (TrMor2006). 

The data noise level was then measured and reported as 3%. This information 

contributes to measurability in the studies to be carried out by using this dataset. 
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Since TrMor2018 has not been presented during our study, and since the previous 

dataset (Yuret and Türe, 2006) was prepared in a semi-supervised way with 

reliability concerns, we have decided to create our dataset to obtain more reliable 

results. Expert tagging on Turkish texts is performed to guarantee data consistency 

in the production of this dataset. Details about the statistics and preparation steps 

are given in the following sections. 

 

3.2.2. Statistics of the Dataset Prepared for This Study  

The statistics related to the dataset prepared and used in this study are shown 

in Table 3.3. 

 

Table 3.3. Statistics of the supervised dataset prepared for this study (# of tokens) 

 (Train)  Ambiguous  Unambiguous  Total 

 Dataset  14,806  21,721  36,527 

 

As seen in Table 3.3, the disambiguated dataset prepared for this study 

includes 36,527 tokens and the token ambiguity rate is 40.5%. We have manually 

collected Turkish news and novel texts from the Web, in order to ensure that the 

dataset has a balance in context. News texts refer to the information on a certain 

event in the related day. 216 news texts and 3 novel texts are collected. The total 

number of sentences for the whole dataset is 5,723. 3,149 of them are news texts 

and the remaining part is from novels.  

 

3.2.3. Dataset Preparation 

Dataset preparation steps include the text pre-processing and 

morphological analysis steps. All texts are pre-processed and cleaned as described 

below: 
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i. Split texts to sentences with Turkish NLTK Punkt (Kiss and Strunk, 

2006) function. 

ii. Remove sentences with less than 20 characters (for example dialogues 

in novel texts) 

iii. Remove punctuation marks and numbers.  

iv. Trim white spaces between the words in the sentences and at the start 

and end of the sentence. 

v. Insert all sentences into a MongoDB NoSQL database with their 

corresponding texts. 

 

The next step in the data preparation phase is, to use the morphological 

analyzer to parse pre-processed sentences for determining the ambiguity status of a 

word. The morphological analyzer (Yıldız et al., 2019) processes all sentences in 

the MongoDB database and saves the outputs in the same database collections. 

This is a pre-condition to be completed before Expert tagging. The parsing steps 

are described below: 

 

i. Select a sentence from the MongoDB database and tokenize it with 

the multi-word tokenizer in morphological analyzer.  

ii. Process each token with the morphological analyzer and define its 

status (ambiguous, unambiguous or OOV). If the word is ambiguous 

save its correct lemma as “dummy” and save its candidates in the 

database. If the word is unambiguous save its lemma and POS tag (All 

data structures are in JSON format). 

iii. Go to Step i 

 

The morphological analyzer output is in inflectional group (IG) structure, 

including the morphological tags and standard POS labels used for Turkish. In the 

scope of this study, the morphological analyzer output is configured to group parse 
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lists as “lemma + POS”. There are three kinds of parse outputs provided by the 

morphological analyzer. If there is only one distinct parse output (“lemma + POS”) 

this indicates there is no ambiguity for the corresponding token. If there are more 

than one parse outputs, there is ambiguity for the token. In this study, for the first 

case, the “unambiguous word” term and for the second case “ambiguous word” 

term will be used respectively. In case, no parse occurs, the morphological analyzer 

is unable to find a lemma for the token (out-of-vocabulary) and this is out of the 

scope of the study. In this case, the relevant token is ignored.  

A JSON sample which represents a sentence processed by the 

morphological analyzer is given below:  

 

{  
    "_id" : ObjectId("5cb2422a29101b3c3468a589"),  
    "Cumle" : "bir grup milletvekilinin İngilterenin ABden 
ayrılmasını önlemeye dönük yasa bir oy farkla onaylanmıştı",  
    "IsTagged" : true,  
    "Text_ID" : ObjectId("5cb23d87f30c8c3d380f60b4"),  
    "Tokens" : [ 
        { 
            "UserId" : ObjectId("5c028e2c9ccc334b60414db0"),  
            "TaggedTokens" : [ 
                { 
                    "token" : "bir",  
                    "lemma" : "bir",  
                    "tag" : "ADJ",  
                    "flag" : "1#bir+DET#bir+NOUN" 
                },  
                { 
                    "token" : "grup",  
                    "lemma" : "grup",  
                    "tag" : "NOUN",  
                    "flag" : "0#grup+NOUN" 
                },  
                { 
                    "token" : "milletvekilinin",  
                    "lemma" : "milletvekili",  
                    "tag" : "NOUN",  
                    "flag" : "0#milletvekil+NOUN" 
                },  
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                { 
                    "token" : "ingilterenin",  
                    "lemma" : "ingiltere",  
                    "tag" : "NOUN",  
                    "flag" : "0#ingiltere+NOUN" 
                },  
                { 
                    "token" : "abden",  
                    "lemma" : "ab",  
                    "tag" : "NOUN",  
                    "flag" : "0#ab+NOUN" 
                },  
    
                { 
                    "token" : "ayrılmasını",  
                    "lemma" : "ayrıl",  
                    "tag" : "VERB",  
                    "flag" : "1#ayrıl+VERB#ayrılma+NOUN#ayır+VERB" 
                },  
                { 
                    "token" : "önlemeye",  
                    "lemma" : "önle",  
                    "tag" : "VERB",  
                    "flag" : "0#önle+VERB" 
                },  
                { 
                    "token" : "dönük",  
                    "lemma" : "dönük",  
                    "tag" : "ADJ",  
                    "flag" : "0#dönük+NOUN" 
                },  
                { 
                    "token" : "yasa",  
                    "lemma" : "yasa",  
                    "tag" : "NOUN",  
                    "flag" : "0#yasa+NOUN" 
                },  
                { 
                    "token" : "bir",  
                    "lemma" : "bir",  
                    "tag" : "PUNC",  
                    "flag" : "1#bir+DET#bir+NOUN" 
                },  
                { 
                    "token" : "oy",  
                    "lemma" : "oy",  
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                    "tag" : "NOUN",  
                    "flag" : "1#oy+NOUN#oy+VERB" 
                },  
                { 
                    "token" : "farkla",  
                    "lemma" : "fark",  
                    "tag" : "NOUN",  
                    "flag" : "0#fark+NOUN" 
                },  
                { 
                    "token" : "onaylanmıştı",  
                    "lemma" : "onayla",  
                    "tag" : "VERB",  
                    "flag" : "1#onay+NOUN#onayla+VERB" 
                } 
            ] 
        } 

    ] 

 

This JSON tagged sentence example is taken from the MongoDB database. 

The “token” field is the output of the tokenizer which is a function of the 

morphological analyzer. The “lemma”, “tag” and “flag” fields include the parts of 

the parse lists. When the “flag” field starts with “0”, this indicates there is only one 

lemma candidate for the token and token is unambiguous. If the “flag” field starts 

with “1”, the following part of the field includes the lemma candidates of an 

ambiguous word. Sometimes the “flag” field starts with “2”. This represents the 

case where the token is unknown due to being an OOV. It is impossible for the 

morphological analyzer to select the correct candidate for ambiguous words from 

the parse options. Because of this, in the beginning, “dummy” is written for the 

“lemma” and “tag” fields. During tagging, these fields are filled by the Expert. For 

example, the last token of the sentence is “onaylanmıştı”. Morphological analyzer 

parse produces two lemma candidates as “onay + NOUN” and “onayla + VERB”. 

The initial values of “lemma” and “tag” fields are “dummy”. After tagging, these 

fields are filled by the correct candidate as “onayla” and “VERB” as seen in the 

JSON example.  
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3.2.4. Tagging Application 

The main purpose of the expert tagging process is to select the correct 

lemmas of ambiguous words with human knowledge. Analyzing the condition of 

the ambiguous word in the sentence helps in selecting the correct lemma from the 

candidates. In the beginning, the data preparation phase should be completed in 

order to start the tagging process. The tagging process is achieved by using a tagger 

tool to label each ambiguous token. For this purpose, we have prepared a web-

based tagger tool in .NET C#. The tagging tool presents the texts and their 

corresponding sentences in the MongoDB database to the Expert. The Expert 

selects the correct lemma candidates and POS tags of the ambiguous words and 

these selections are saved to the database. An example screen of the tagger tool is 

shown in Figure 3.6. 

 
Figure 3.6. “Texts” screen of the tagger tool 

 

Figure 3.6 shows a screen for the texts stored in the MongoDB database. 

“Cümleler” button lists all the corresponding sentences of the text. “Etiketli 

Cümleler” lists the sentences of this text which are tagged by the Expert. Figure 3.7 

shows the Sentences screen when the “Cümleler” button is clicked. 
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Figure 3.7. “Sentences” screen of the tagger tool 

 

In Figure 3.7, tagging starts by clicking the “Etiketle” button. By clicking 

the “Etiketle Güncelle” button Expert can update the lemma and tag information of 

the tokens in a pre-tagged sentence. Figure 3.8 shows “tokens” view before 

tagging.   

 

 
Figure 3.8. “Tokens” screen of the tagger tool 

 

The database stores the tokens as single units provided by the 

morphological analyzer. In some cases, the lemma of a compound word may not 

available in the dictionary, so tokens are shown as separate tokens on the screen. 

For example, the “faltaşı”, “gibi” and “aç” tokens are a part of a phrase and seen in 

Figure 3.8 will be shown to Expert as a single unit if it exists in the dictionary of 

the morphological analyzer as “faltaşı gibi aç” which is the lemma of the inflected 

word “faltaşı gibi açıyor”. However, since the compound verb “faltaşı gibi açmak” 
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is not present in the dictionary, the Expert is expected to combine these tokens on 

the screen. The merging of the units by the expert is shown in Figure 3.9. 

 

 
Figure 3.9. Merging tokens in the tagger tool 

 

The tokens shown in Figure 3.8 can be combined any time to form new 

compound words. These compound words can be added to the morphological 

analyzer dictionary after Expert control. Thus, the dictionary can be enriched. 

Following the tokenization step, lemmatization and POS tagging begin as shown in 

Figure 3.10. 

 

 
Figure 3.10. Tagger tool lemmatization and POS tagging screen 

 

In Figure 3.10, the lemma and POS tag are selected by the Expert. The 

Expert does not know about the lemma candidates of a word stored in the database. 

The POS tag types listed here are exactly the same as the POS tag types used by 

the morphological analyzer to provide consistency.  
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3.3. Morphological Analyzer (Yıldız et al., 2019) 

A morphological analyzer, which was recently presented by Yıldız et al. 

(2019), is used in this study. When the codes of morphological analyzer were 

examined in detail, it was observed that the Finite State Machines (FSM) presented 

for Turkish by Oflazer (1994) was modified and used in the morphological 

analyzer. Additional gates are added to the verbal FSMs, specifically to match 

certain flags in the dictionary. Also, it can be seen that a detailed dictionary has 

been prepared for the morphological analyzer Yıldız et al. (2019). Accuracy tests 

are performed for morphological analyzer as its original version and the results are 

presented in Table 3.4. 

 

Table 3.4. Accuracy test results of the ‘Morphological Analyzer’ 

Word count 28,863 

Correctly lemmatized with the 
exact result 

22,640 

Incorrect lemmatization 95 

Ambiguous words 6,128 

Lemmatization Accuracy        99.6%   * 

*When ambiguity is ignored 

 

In Table 3.4 we provide the accuracy results of the morphological analyzer 

tested with a supervised dataset. The words used for lemmatization are provided 

from a dataset presented by Tahiroğlu B.T. (2014). This dataset is in <word, 

lemma> format. where “word” is any word and “lemma” denotes its lemma 

defined by the Expert who prepares the dataset. In Table 3.4, “Correctly 

lemmatized with exact result” shows the results when the “word” in <word, 

lemma> is given as input and the output of the morphological analyzer exactly 

matches with the “lemma” in the tuple. Ambiguity is ignored with removing the 
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6,128 words from the 28,863 total.  In this case, 22,640 unambiguous words are 

correctly lemmatized and lemmatization accuracy was 99.6%.   

The running time performance of the morphological analyzer is also 

measured and the results are given in Table 3.5 as its original version. The dataset 

used for the test is acquired from (Sezer T, 2017) which consists of Turkish news 

data.  

 

Table 3.5. Time performance of the ‘Morphological Analyzer’ 

Token count 22,785,894 

Sentence count 1,552,495 

Total parse time 125 seconds 

 

As seen in Table 3.5, the morphological analyzer can parse nearly 22 

million tokens approximately in 2 minutes. 

We have realized that compound words are missed in the dictionary used 

by the morphological analyzer. Because of that, units (words) of a compound word 

are treated as separate tokens in tokenization and this contributes to overall 

ambiguity. In order to prevent this kind of ambiguity, 29,829 compound words in 

the TLA dictionary are added to the morphological analyzer dictionary and 

analyzer is used in this way. 

The FSMs embedded in the morphological analyzer include derivational 

affixes with the inflectional affixes in their designs. Like many other 

morphological analyzers, while composing the parse outputs, they use both types 

of affixes together. Because of that, more parse candidates are produced by 

including the root forms of the lemmas in the same parse. This is sometimes one of 

the causes of ambiguity originated by the morphological analyzer. An example of 

this case is given in Figure 3.11. 
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Figure 3.11. Parse output for the word "düzenlenecek" 

 

Figure 3.11 shows the analysis made by morphological analyzer for the 

word “düzenlenecek”. As a result of the fact that FSMs processed the “-n” 

derivational suffix with passivity there can be seen many lemma root words like 

“düzenle”, “düzen” and “düz” in the parse outputs; which causes ambiguity. The 

parse output should be one instead of many and should contain the correct lemma 

as “düzenlen” with the corresponding POS tag (VERB). 
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4. METHODS 

 

In this section, we give the details of the proposed classification algorithm, 

Learning Word-vector quantization (LWQ), which is an adaptation of the well-

known classification algorithm Learning Vector Quantization (LVQ). Also, the 

multi-word tokenizer we that we have developed is explained with an example. 

Finally, our approach to the identification of OOV words in texts is given.  

 

4.1. Proposed Morphological Disambiguation Method – LWQ 

We have developed LWQ, in inspiration of the LVQ method, to solve the 

morphological disambiguation problem. The relations of word-vectors that belong 

to different classes are modeled by adjusting their positions in a vector space with a 

reward-or-penalize strategy.  

The data model is prepared by dividing a sentence or text into segments by 

applying a window of width w to an ambiguous word. The idea is, to collect w/2 

unambiguous neighboring words from both the right and left sides of the target 

word (ambiguous word). Lemmas of each unambiguous word that enter the 

window compose “motion pairs” with the lemma candidates of the ambiguous 

word. Figure 4.1 illustrates how a window with a size of 4 is applied to an example 

sentence. 
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Figure 4.1. A sample sentence for a window-size=4 

 

In Figure 4.1, B1 and B2 represent unambiguous words within the window, 

and G1 and G2 represent the lemma candidates of the ambiguous word. The 

application of a window in the study is applied by selecting an equal number of 

unambiguous words from the right and left of the target ambiguous word. Since 

each text in the corpus is evaluated separately (not all sentences of the texts are 

consecutively linked), the window implementation in the last sentence of each text 

is performed as in Figure 4.1. 

Once the dataset is prepared, two distinct vocabularies for the ambiguous 

and unambiguous word lemmas are created. Word-elements in these vocabularies 

are randomly located in a vector-space. Vector size is defined by the user. After 

that, the training steps begin with a distance-based classification test. This test is 

performed separately for each row in the dataset. In the dataset row, the ambiguous 

word’s lemma candidate (Gi), whose sum of the distances to w unambiguous words 

(Bj) is closest, wins the test. Mathematically, argmin
1≤𝑖≤𝑚

(∑ ‖𝐺𝑖 − 𝐵𝑗‖𝑤
𝑗=1 ) calculates 

all the candidates’ distances for each ambiguous word. If the winner is the correct 

candidate, training passes to the next row of the dataset without updating. 

Otherwise, the candidate who is required to win is subject to approximation and 

other candidates are subject to departure in vector space. All the possible 
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relationships that can be established for the example sentence given above can be 

modeled on a complete bipartite graph when unambiguous word lemmas are 

represented as one set and ambiguous word lemmas as the other set. The elements 

of each set only establish relations with the elements of the other group as (B1, G1), 

(B1, G2), (B2, G1), (B2, G2), in the form of “motion pairs”. The distance-based 

classification tests for each ambiguous candidate are shown as “motion pairs” as in 

Figure 4.2. 

 

 
Figure 4.2. Distance-based classification test for a sample sentence 

 

In Figure 4.2, blue circles represent the unambiguous (B1 and B2) and green 

circles represent the ambiguous lemma candidates of a word as (G1 and G2). 

According to the distance-based classification test, the candidate G1 is more distant 

than the G2 candidate (D11+D12>D21+D22). Therefore, G2 (kapan+NOUN) is chosen 

as the solution to the ambiguity. However, according to the example sentence, for 

the ambiguous word “kapandı”, the correct lemma candidate must be G1 (kapan + 

VERB). Reward-or-Penalize step is applied to related word-vectors to solve this 

error. Accordingly, the LWQ algorithm tends to move each word-vectors of the 

(B1, G1) ve (B2, G1) pairs closer and (B1, G2) ve (B2, G2) pairs further.  In terms of 

ease of representation, in the study, approximating “motion pairs” and departing 
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“motion pairs” are shown as (B1, G1, +1), (B1, G2, -1) respectively. Figure 4.3 

shows the reward mechanism for the sample sentence. 

 

 
Figure 4.3. Rewarding steps in training for a sample sentence 

 

The rewarding phase shown in Figure 4.3 depicts the approximation of the 

correct lemma candidate (G1) (selected by the Expert) to the unambiguous lemmas 

(B1 and B2). This amount of approximation is determined by the learning ratio () 

and gradually reduced until convergence occurs. The mathematical representation 

of this rewarding movement is represented as (4.1). 

 

𝐵1(𝑡 + 1) = 𝐵1(𝑡) − 𝜂(𝐵1(𝑡) − 𝐺1(𝑡))   

 (4.1) 

 𝐺1(𝑡 + 1) = 𝐺1(𝑡) + 𝜂(𝐵1(𝑡) − 𝐺1(𝑡)) 

 

Similarly, the LWQ also has a penalization phase, and this step is shown in 

Figure 4.4 for the example sentence. 
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Figure 4.4. Penalization steps for the training in a sample sentence 

 

In the penalization phase shown in Figure 4.4, lemma candidates (G2) 

which are not the correct lemma candidate and unambiguous word lemmas (B1 and 

B2) are departed from each other. Process calculations are shown in (4.2), which 

are obtained by changing the direction of the signs in (4.1). 

 

𝐵1(𝑡 + 1) = 𝐵1(𝑡) + 𝜂(𝐵1(𝑡) − 𝐺2(𝑡))  

  (4.2) 

   𝐺2(𝑡 + 1) = 𝐺2(𝑡) − 𝜂(𝐵1(𝑡) − 𝐺2(𝑡))  

 

Using directional distances between motion pairs, both vectors take a step 

toward each other in  (eta) value. Convergence control is performed with the 

script given below.  

if S(t)  S(t-1) { 

  cnt = cnt + 1; 

  eta = eta / 2; 

  if cnt > 5 break;  

    } 



4. METHODS                                                                                  Enis ARSLAN  

50 

S(t) is the last obtained success (correct classification ratio) in training, S(t-

1) is the previous one. The lack of improvement in training achievement in 

convergence control is compensated by dividing the learning rate into two. If this 

repeats five times, training is terminated. 

When all “motion pairs” in the prepared training datasets are listed 

separately, it is observed that some pairs consistently approximate or depart. 

Suppose that, the unambiguous word BX and the ambiguous word lemma candidate 

GY should pass together on two different rows of the train set. In the first row, GY is 

the correct candidate and in the second row, it is the incorrect candidate. 

Accordingly, one of the “motion pairs” prepared for the first row of the train 

dataset will be (BX, GY, +1) and for the second row, it will be (BX, GY, -1). 

Considering the characteristic training logic of the LWQ algorithm, it can be said 

that these two motion pairs will create instability. Because they neutralize each 

other, these type of “motion pairs” are called “ineffective motion pairs” in this 

study. These pairs are excluded from training datasets by considering that they 

could not contribute to training. For this purpose, a simple training dataset is 

prepared by selecting w=2 since a maximum number of “motion pairs” from the 

training dataset can be obtained. “Ineffective motion pairs” are determined by 

using this dataset. The lemmas constituting these pairs are collected from the 

“motion pair” data structure and saved in a list called “ineffective lemma list”. LF 

term is used for “ineffective lemma list”. Then, when training datasets are 

prepared, these ineffective lemmas are used to filter unambiguous words’ lemmas. 

Thus, it is ensured that no ineffective lemmas are present which behave as stop-list 

in LWQ training. 

The processing steps of the proposed system (data preparation, LWQ 

training) are given below. 

 

1. Request window width (w) as input. 
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2. Select two unambiguous words around the target ambiguous word for 

the given window width (by ignoring the unambiguous words in the 

filter list (LF)). Add them into the dataset as a new row. The added 

row will be in (B1,B2,...Bw : G1,G2,...,Gm). Here, the terms Bi are 

unambiguous word lemmas (lemma+POS) entering the window, and 

Gi are the lemma candidates (lemma+POS) of the ambiguous word 

produced by the morphological analyzer. The value of m may vary in 

each row, depending on the number of candidates of each ambiguous 

word.  

3. Prepare a vocabulary V = VU  VC, which includes all unambiguous 

words’ lemmas and candidates in the dataset. 

4. Request vector size (N) as input. 

5. Divide the dataset into two as train and test. Define a random initial 

point in the N dimension for each lemma in V. 

6. For each row in the train set, calculate argmin
1≤𝑖≤𝑚

(∑ ‖𝐺𝑖 − 𝐵𝑗‖𝑤
𝑗=1 ) and 

select the winning candidate. If it is not correct, update the word 

vectors positions. 

7. If convergence is not achieved, go to Step 6, otherwise, stop. 

 

Considering that each lemma constituting a “motion pair” is represented by 

a vector, each “motion pair” can be considered as an equation. With these 

equations, vectors behave like two magnets that attract or repel each other. As the 

width of the window sliding over the sentences increases, the number of properties 

in the dataset and hence the number of “motion pairs” (equations) increases. In 

statistical studies, it is known that as the number of equations increases for a given 

number of variables, the probability of solving the problem increases. Therefore, 

defining a wider window can mean getting more equations and finding more 

reasonable solutions. Nevertheless, from the training datasets, for an absolute 
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solution, a sufficient count of equations may not be obtained. This is exactly like 

trying to solve a system of two unknowns with one equation. In this way, the 

problem of “insufficient equations” can cause the system to propose different 

results each time as inconsistent outputs. The only thing that can be done is to 

increase the number of equations, both to ensure consistency and to improve 

accuracy. In fact, it can be said that there is a need for equations (relationship 

definition) which provides all possible word relations between VB and VG that can 

be established as a complete bipartite graph. Although we have generated complete 

bi-partite relationships on each row of the train set, it is not possible to achieve this 

for the entire vocabulary. Therefore, it would be more accurate to focus on the 

determination rather than ensuring consistency. 

Both the problem of “insufficient equations” described above and the fact 

that word vectors start training in random positions raises concerns about the 

consistency of classification (COC). In order to evaluate this situation, the most 

commonly used approach in the literature is to examine the outcomes by repeating 

the training at different times. The proposed LWQ algorithm is repeated 100 times 

in all experiments, on each training dataset and the variability of the classified 

outputs by the algorithm is analyzed. Accordingly, LWQ estimates some 

ambiguities in the train dataset consistent-correct (always correct), only a small 

part consistent- incorrect (sometimes correct and sometimes incorrect), and the rest 

as inconsistent (sometimes correct, sometimes incorrect). The effect of the 

window-size and the size of the Euclidian space defined for the word-vectors to the 

COC and accuracy are presented and interpreted below. 

LWQ algorithm shows some similarities with the original LVQ algorithm. 

Both use supervised datasets. But they also differ in some way. At first, the models 

are different. LWQ uses unambiguous word lemmas as inputs and ambiguous word 

lemma candidates are prototypes. Given a data row, each prototype belongs to a 

single class as “correct” and “incorrect”. Vocabularies of the input and prototype 

words are coded as vectors and represented in the same space with random 
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locations. LVQ algorithm is a pure NN (Neural Network) where, there are mainly 

three layers as input, Kohonen and output. Kohonen layer consists of prototypes 

which are represented as reference vectors. Reference vectors are a subset of input 

vectors and their classes are assigned randomly, not as supervised in LWQ. Only 

input vectors’ classes are known. In each iteration, a Euclidian distance calculation 

is done for each input vector to all the reference vectors in the model 

independently. But in LWQ, training is limited to a row (which represents an 

ambiguous word) regarding its candidates and the unambiguous word lemmas. In 

LVQ, all reference vectors are used in Euclidian distance calculation of an input 

vector, but in LWQ, only the ones in the same line, dependently. Porotypes of LVQ 

use a weight matrix where LWQ does not benefit from a weight matrix. 

These two algorithms differ also in method. LVQ aims to assign a class to 

an input vector by using the information of the reference vectors.  But LWQ 

calculates the optimum locations of the input and reference vectors by using the 

class information. Reward steps are similar in logic, but implementation is 

different. In LWQ, limited to a data row, each input vector’s distance to the 

prototypes (i.e. candidates of ambiguous word) are calculated separately. If the 

prototype with the correct class is more near than the other prototypes (in the same 

row) to the input vectors (in the same row) no action is taken, otherwise, the 

correct prototype and these input vectors approximate (reward) to each other while 

the other prototypes and same input vectors depart (punish) each other. In LVQ the 

nearest prototype vectors are calculated for a given input vector and the nearest 

prototypes are departed or approximated according to being in the different class or 

not.    

 

4.2. Multi-word Tokenizer 

As mentioned before, all the texts in the dataset are split into sentences and 

each sentence is tokenized. Original codes of morphological analyzer include a 

basic tokenizer that tokenizes sentences word by word in its normal operation. 
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Compound words can exist in sentences in their simple or inflected forms. In order 

to identify these multiple word strings, we have developed a tokenizer function and 

replaced it with the original one. 

This tokenizer iteratively examines each word and the following words in 

the sentence and detects the possible multi-words according to their presence in the 

dictionary. When the detected word group exists as a compound word in the 

dictionary, it is defined as a token. The tokenization process continues until the end 

of the sentence iteratively by assigning the last word of the recently detected word 

group as the start point. The possibility that a word group is an inflected form of a 

compound word, is analyzed by searching similar words in the dictionary by 

subtracting two and three letters from the end. Tokenizer function execution steps 

for an example sentence is presented in Figure 3.12. 

 

Figure 4.5 Execution steps of the tokenizer function in an example sentence 

 

4.3. OOV Discovery 

Morphological analyzers are mostly dependent on their static dictionaries. 

OOV words cause ineffective operation of the morphological analyzer by causing 

many unknown words.  In this section, we share the details of a system (Arslan and 

Orhan, 2019) that can discover OOV words in a semantical graph. This system is 

also capable of discovering collocations. 
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This graph system is composed of four phases and is shown in Figure 4.6.  

 

 
Figure 4.6 OOV discovery system schema 

 

In the first phase, lemmas of the TLA dictionary (from Güncel Sözlük) are 

added as nodes. In the second phase sentences which are parts of news texts 

(Tahiroğlu B.T., 2014) are tokenized and lemmatized (details will be given later). 

When lemmas are obtained, co-occurrence information is created as graph relations 

for each of them. In the third phase, collocations are discovered. In the fourth 

phase, discovered lemma candidates are pruned by deleting the unnecessary ones. 

As a dataset, 50,000 sentences are used which were retrieved from 

Cukurova University Turkoloji Corpus (Tahiroğlu B.T., 2014). Sentences are 

processed and for every 1,000 sentence, collocation discovery and candidate 

pruning were applied. 

In the beginning, all the TLA lemmas are added as nodes to a graph 

database (Neo4J). Statistics of the TLA lemmas are given in Table 4.1. 
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Table 4.1. Statistics of TLA lemmas for semantic graph 

 Verb Noun Total 

Lemma count 12,706 66,658 79,364 

Lemma count with 
double POS tags 

 535 

 

Since there are some lemmas with both Noun and Verb POS tags, distinct 

nodes are created for each and each may have different graph relations. 

Tokenization simply tokenizes each word in the sentence regarding the 

spaces between them. But also tokenization is capable to detect compound words 

in the sentence. Each token phrase is searched in the graph to be a TLA lemma 

compound with the same name. Possible compound TLA candidates are retrieved 

as candidates and checked if the surface form (token phrase in the sentence) can be 

an inflected form of these candidates with affix validation function (AVF) function 

(Arslan and Orhan, 2017). If one candidate is possible, and it has n words, 

tokenizer goes to the (n+1)th word in the sentence.  

For example, for the sentence: “Çocuk okula koşa koşa gitti” the tokenizer 

will detect the TLA lemma “koşa koşa git” as Verb from the graph, and the tokens 

will be as: “Çocuk”, “okula”, “koşa koşa gitti”. 

After tokenization, Lemmatization starts. It searches for all similar forms 

of the token in the graph. If there is one, node frequency increases by 1. Otherwise, 

lemma candidates (similar words) of the token are retrieved from the graph and 

they are checked with AVF function. When this function returns true, the detected 

(checked) candidates’ node frequencies are incremented by 1. A node will be 

created for the token (i.e. inflected word) with “Word” tag and it establishes 

relations (MORPH) with the lemmas. If no candidate returns, this is an unknown 

word (UW) and lemma discovery function (LDF) runs.    

 UW’s are the input to the LDF function. LDF simply removes a character 

from the UW and behaves each substring as a possible lemma. All possible lemma 
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candidates are collected in this way. These candidates are validated with AVF 

function. If the validation returns true, the substring is a new node with the 

“LemCand” label. The newly created LemCand nodes are connected to the UW 

node with MORPH relation type and the node and relation frequencies are 

increased by 1. The pseudo-code of the LDF function is as follows: 

 

N = LEN(X) - 1 

Xcand = LEFT(X, N) 

WHILE (N >1)  

checkVal = AVF (Xcand, X, “noun”) 

IF (checkVal) 

CREATE Node {name:Xcand, postag:“noun”} 

checkVal = AVF (Xcand, X, “verb”) 

IF (checkVal) 

CREATE Node {name:Xcand, postag:“verb”} 

N = N – 1 

Xcand = LEFT(Xcand,N) 

END WHILE 

 

where N is the number of characters of the UW, Xcand is the substring to be 

checked. Function named “LEFT” takes the left N characters from the X string as a 

new substring. Two nodes are created with Noun and Verb POS tags, some of them 

will be eliminated in the pruning phase.  

When all possible lemmas and lemma candidates (LemCands) in a 

sentence are detected, a n-to-n neighboring relation is established within each other 

with the “COOCCUR” label. If this relation exists before it is incremented, 

otherwise, a 1 value is given for the relation.  

A summary of the created nodes and relationships in the semantic graph 

are given in Table 4.2 
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Table 4.2. Node and relation labels summarized 

Label Type Description 

Word Node Inflected word 

Lemma Node Lemma originates from TLA Dictionary 

LemCand Node Lemma candidate discovered by LDF 

VerLemCand Node Verified Lemma candidates selected after pruning 

CollCand Node Collocation candidates discovered 

COOCCUR Relation 
Relations  established between Lemmas and 

LemCands  

MORPH Relation 
Relations  established between Lemmas 

(LemCands, VerLemCands) and Inflected Word 

 

Collocation discovery is achieved by using the frequency statistics of the 

node pairs with a simple formula: 

 

IF (R.neighFreq/R.relFreq)>0.86 AND (r.neighFreq>10) 

THEN CONCATENATE n,m 

 

where neighFreq denotes the frequency of token lemmas that cooccur 

together. relFreq denotes the general frequency value to be neighbor in any 

distance. The threshold values of 0.86 and 10 are defined empirically. The pairs 

consistent with the formula are concatenated as a new word (collocation) and a 

node created with the label “CollCand”.  

Statistics of the semantic graph when all sentences in the dataset are 

processed is given in Table 4.3. 
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Table 4.3. Statistics of the semantic graph 

Description Label Count 

Lemma node Lemma 79,364 

Lemma candidate node LemCand 47,979 

Verified Lemma candidate node VerLemCand 4,312 

 

Nodes with Lemcand labels are mostly meaningless. But of course, there 

are real discoveries. After the processing of each 1000 sentence, a pruning job 

starts and cleans the unnecessary LemCands. The remaining ones change the label 

as “VerLemCand” as being verified.  This job is also responsible to execute the 

collocation discovery. Some examples of the collocation discovery are given in 

Table 4.4. 

 

Table 4.4. Some examples of the discovered collocations 

Discovered word Frequency value 

başta olmak 93 

konu olmak 59 

daha fazla 26  

üzerinde bulunmak 22 

maç oynamak 21 

bayram günü 21 

diye düşünmek 17 

 

The lemma discovery flowchart is given in Figure 4.7. 
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Figure 4.7 OOV discovery process flowchart 
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5. RESULTS AND DISCUSSIONS 

 

In this section, experimental results are explained in detail. Comparison 

results are given with the related studies performed for the morphological 

disambiguation of Turkish.  

The experiments were run on a PC which has a Windows 10 Pro operating 

system, 64 GB of RAM, Intel Core i7-8700 3.2 GHz double-core processor. The 

processing load is handled by 2 GeForce GTX 1080 GPU units. 

 

5.1. Performance Metrics for the Proposed Method 

In this study, accuracy parameter is used to measure the success of the 

LWQ classification because it is the well-known and most used metric in 

morphological disambiguation literature.   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝐶𝑎𝑚𝑏

𝑁
 (5.1) 

 

where accuracy denotes the correct prediction ratio, Camb represents the 

correctly predicted (by LWQ) ambiguous word count (one data line consists of 

only one ambiguous word) and N is the data line count in a dataset. 

  

5.2. Experimental Results for the Proposed Method 

This section includes k-fold validity tests and the results obtained by 

examining the window-size (w) and vector space size on accuracy and consistency 

of classification (COC).  Also, the causes of inconsistency in classification are 

analyzed. 
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5.2.1.  k-fold Validity Tests  

In order to measure test accuracy as accuracy, and to measure validity, the 

k-fold approach was used. Here, various experiments have been performed for the 

values of k between 2 and 10, where this interval is commonly used in the 

literature.  In a study (Altintas et al., 2005), which implements windowing, they 

have acquired the highest accuracy value with window-size 14. For this reason, we 

have selected window-size as 14. Our study has similarities with Glove 

(Pennington et al., 2014) and they have used the word-vector dimension as 300 for 

the best results. In this inspiration, we have chosen a close value as 200, for the 

word-vector dimension. accuracy and processing time values for different k-fold 

values regarding the parameters as the window-size (w) 14 and word-vector 

dimension (N) 200 are presented in Table 5.1. 

 

Table 5.1. K-fold validity test results for different k values (w=14 and N=200)   
 2 3 4 5 6 7 8 9 10 

Accuracy 

(%) 
85.14 85.27 85.60 85.02 85.64 85.34 85.01 84.96 85.55 

Time 

(min) 
103 157 191 236 241 293 325 358 361 

 

According to Table 5.1, it has been determined that different k values affect 

accuracy at a minor level. For k values 2 and 3, although accuracy values are close, 

the system spends 1.5 times more processing time. Similarly, when the algorithm 

runs for k=6, which provides the best accuracy value, it spends nearly 2 times 

processing time when compared to k=2. It can be seen that; different k values affect 

success at a minor level with low running time. When a large number of 

experiments are planned it is considerable to select the optimum k value as 2. 

Because of this, k=2 value is used in the tests as 2-fold cross-validation where 50% 

of the dataset is used as train and other 50% as test datasets. 
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After the determination of the validity requirement and accuracy definition 

requirements, it is better to optimize the parameters which affect the results of the 

study. In this consideration, the effects of two important parameters (window-size 

(w) and word-vector dimension (N)), which could directly affect the results, are 

examined in the following experiments. 

 

5.2.2. Effects of Window-Size and Word-Vector Dimension on Accuracy and 

COC   

This section includes experiments to measure accuracy for different word-

vector dimension values, on different train datasets which are prepared by changing 

the window-size. The preparation of the train datasets requires changing the 

window-size by using the windowing method, while the adjustment of the word-

vector dimension requires the retraining of the LWQ algorithm. Table 5.2 shows 

the results of some experiments conducted on different values of these two 

parameters. The experiments are repeated 100 times to measure the consistency 

(COC) of the accuracy. Training success is between 97% and 100%. 

 

Table 5.2. The effects of window-size and word-vector dimension on accuracy (%) 
Word-vector dimension (N) 

 2 20 200 2000 5000 

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

2 66.1 0.9 84.0 74.3 5.8 96.1 75.9 9.7 97.4 79.0 22.3 97.9 80.8 30.1 97.9 

6 73.7 4.3 97.6 79.2 14.5 98.0 81.4 28.8 97.5 84.8 46.0 97.1 85.8 53.0 96.7 

10 75.1 6.3 97.8 80.7 20.3 98.2 83.6 37.5 97.7 86.3 54.5 96.7 86.9 60.6 96.3 

14 75.6 7.3 97.7 81.5 24.0 98.0 84.6 44.1 97.5 86.8 59.0 96.4 87.1 62.9 96.2 

18 76.1 8.1 97.6 82.1 26.5 98.1 85.1 47.0 97.3 86.6 59.8 96.3 86.9 63.2 95.9 

22 75.9 8.2 97.5 82.1 28.8 97.9 85.1 48.0 97.1 86.5 59.6 96.1 86.6 62.8 95.8 

26 75.0 8.3 97.0 82.1 30.0 97.4 84.9 47.7 96.8 85.9 58.5 95.9 86.0 60.6 95.6 

 

The terms used in Table 5.2 are as follows: S1 is the average value of the 

accuracy when the training is applied for 100 times (average accuracy). S2 is the 



5. RESULTS AND DISCUSSIONS                                                  Enis ARSLAN  

64 

average value of the ambiguous terms, which are classified as always correct or 

always incorrect in all 100 training cycles (COC ratio). S3 is the average value of 

the correctly classified terms in consistent data rows for all of the training cycles 

(consistent accuracy). According to Table 5.2, both average accuracy (S1) and 

COC ratio (S2) values increase for the parameters N and w in direct proportion. 

However, the rate of increase in accuracy is decreased, when the window-size 

exceeds 14. Likewise, when the word-vector dimension is greater than 200, there 

are little increases in the values of S1, S2, and S3. Interestingly, S3 isn’t too much 

affected by the change in parameters N and w, except for w=2. In experiments, 

word-vector dimension starts by the value N=2 and increments with a factor of 10. 

Because of the limitation of the GPU-card memory, a maximum dimension of 5000 

is used.  

When test results are considered, standard deviation values are lowest and 

very near for window-size values 10 and 14 for N=2000 as 0.247 and 0.250, 

respectively. For the same windows-size values when the test is applied for n=200, 

the values are 0.27 and 0.31 and for N=5000, the values are 0.21 and 0.26, 

respectively. Standard deviation values are very high for low window-size (w=26) 

as 1.42 and values change between 0.68 and 1.42 for all dimensions. 

In order to measure the effect of the “ineffective lemma pairs” in accuracy, 

filtered datasets are also trained by LWQ. accuracy values provided by these 

filtered datasets are presented in Table 5.3.  

 

  



5. RESULTS AND DISCUSSIONS                                                  Enis ARSLAN  

65 

Table 5.3. The effects of window-size and word-vector dimension on accuracy 

when filtered with ineffective lemma pairs (%) 

Word-vector dimension (N) 

 2 20 200 2000 5000 

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

2 66.3 0.7 88.5 74.5 5.3 97.1 76.1 9.3 98.3 79.3 22.5 98.3 81.1 31.8 98.2 

6 74.1 4.0 97.5 79.3 13.6 98,2 81.8 28.4 97.9 85.2 47.8 97.4 86.3 55.2 97.0 

10 75.5 6.5 97.9 80.9 19.4 97.9 83.9 37.6 98.0 86.7 57.3 97.0 87.2 61.9 96.6 

14 76.1 7.4 98.1 81.6 23.7 98.3 84.8 44.0 97.8 87.0 60.3 96.6 87.3 64.6 96.3 

18 76.5 8.5 98.0 82.0 26.3 98.3 85.3 47.1 97.5 87.0 61.8 96.3 87.2 65.2 96.0 

22 76.6 9.1 98.0 82.3 28.3 98.0 85.4 48.8 97.2 86.8 62.3 96.1 87.0 65.2 95.8 

26 76.7 9.2 98.0 82.6 30.1 97.6 85.5 49.6 97.2 86.7 62.1 96.1 86.8 65.1 95.9 

 

When the experiment results in Table 5.3 are compared with Table 5.2, it 

can be seen that accuracy is increased in [3..5]% with the usage of the datasets, 

which discards the “ineffective lemma pairs” (filtering). All remaining values are 

in accordance with each other. While window-size values w=10 (Yuret and Türe, 

2006; İlgen et al., 2013) and w=14 (Altintas et al.,2005) provide the best accuracy 

values for Turkish, this complies with the experiment results given in Table 5.2 and 

5.3. 

Standard deviation values for the tests with filtered data are lowest and 

very near for window-size values 10 and 14 for N=2000 as 0.22 and 0.25, 

respectively. For the same windows-size values when the test is applied for n=200, 

the values are 0.29 and 0.28 and for N=5000, the values are 0.23 and 0.25, 

respectively. Standard deviation values are very high for low window-size (w=2) as 

1.32 and values change between 0.66 and 1.32 for all dimensions. 

In another analysis, it was identified that intersection values of the 

vocabulary list of the words (“lemma + POS”) used in the input (unambiguous 

word lemmas-VB) and the output (ambiguous word lemmas- VG) parts of the 

datasets were very high and they have included the filtered “ineffective lemmas”. 
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Table 5.4 presents the numbers of elements in intersection and union of the 

vocabularies (VG and VB) (used in the datasets of experiments given in Table 5.2 

and Table 5.3) for different window widths. 

 

Table 5.4. Some relations of the vocabularies for different window-size values 

 Window-size (w) 

2 6 10 14 18 22 26 

VG ∩ VB 989 1,146 1,170 1,166 1,158 1,142 1,123 

VG ∪ VB 7,398 8,699 8,953 8,984 8,962 8,890 8,820 

VG ∩ VB * 930 1,052 1,059 1,047 1,032 1,010 977 

VG ∪ VB * 7,641 8,795 8,946 8,919 8,839 8,750 8,610 

*: datasets filtered with the “ineffective lemmas” 

 

Table 5.4 shows that using “ineffective lemmas” in a filter, has decreased 

the intersections and unions. When the experiments shown in Tables 5.2 and 5.3 

are considered together with Table 5.4, it can be stated that using this filter 

increases accuracy by decreasing the intersection of vocabularies. This supports the 

highlighted idea at the beginning of the study: “the vocabulary of the dataset can be 

modeled by splitting it into two vocabularies of ambiguous and unambiguous 

words lemmas”. To assure this claim, in another experiment, intersection of the 

vocabularies (in other words, words exist in the dataset in both ambiguous and 

unambiguous form) of ambiguous and unambiguous words (VB∩VG) is used as 

another filter (intersection filter). By using this filter, the relationship between the 

input and output parts of the dataset represents a bipartite graph. It can be said that 

only unambiguous words can be used to detect the correct candidate for the 

ambiguous word. The experiment results obtained by using the datasets prepared 

by using the defined filters are given in Table 5.5. 
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Table 5.5. Effect of different filters on COC and accuracy for window-size 14 (%) 
Word-vector dimension (N) 

 2 20 200 2000 5000 

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

N 75.6 7.3 97.7 81.5 24.0 98.0 84.6 44.1 97.5 86.8 59.0 96.4 87.1 62.9 96.2 

F-1 76.1 7.4 98.1 81.6 23.7 98.3 84.8 44.0 97.8 87.0 60.3 96.6 87.3 64.6 96.3 

F-2 76.1 7.1 97.9 81.4 20.8 98.7 85.0 40.8 98.4 87.6 60.0 97.2 88.0 65.2 96.9 

N: Normal, F-1: Filter-1, F-2: Filter-2 

 

In Table 5.5, the first line (Normal) represents the experiment results for 

accuracy and COC, when no filter is applied, the second line, when “ineffective 

lemma” filter (Filter-1) is applied and the third line, when “intersection filter” 

(Filter-2) is applied to the datasets. According to Table 5.5, the highest accuracy 

values are obtained when the dataset is prepared as VG ∩ VB = ∅ (Filter-2). With 

these results, it was determined that, LWQ system is negatively affected by the use 

of unambiguous forms of lemmas in the input parts of the datasets, which of them 

can sometimes be ambiguous (intersects), For example, morphological analyzer 

produces “ev+NOUN” as the lemma form of the inflected word “evde”. Although, 

another inflected form of its lemma enables the derivation of the inflected word 

“evini” which is ambiguous. The morphological analyzer can produce the lemma 

candidates as “ev+NOUN” and “evin+NOUN” for the word “evini”. When 

“intersection filter” is applied to the datasets, such lemmas like “ev+NOUN” will 

not occur in both the input and output sides of the dataset at the same time. 

Limitation on the intersection of vocabularies of both ambiguous and unambiguous 

words with this filter makes a positive impact on the accuracy. But for the short 

texts which consist of a little count of unambiguous lemmas, this filter may not be 

applicable.     

LWQ system’s full training plan is based on using the approximating and 

departing equations to locate the word-vectors. Word-vectors are semi-trained 

when only approximating or departing equations are used for the location 
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positioning. For this reason, types of equations are divided into two: 1) EQ+ for 

approximating, 2) EQ- for departing. In the study, the word-vectors trained only 

with EQ+ or EQ- type equations are considered to be semi-trained. Word-vectors 

start training in random starting points, very distant from each other, with high 

dimension sizes as 2000 or 5000. When high dimensions are considered, only EQ- 

type equations can be sufficient and these vectors in the training behave as EQ+ 

type. This can be the interpretation of why a dataset with a high “insufficient 

equation” problem can achieve the highest accuracy in high dimensions. But the 

opposite (EQ+ type word-vectors trained in the low-space size with EQ- type 

equations only) of this idea isn’t always true. Word-vectors trained in the low 

dimension size may cause undesirable approximations and EQ+ type training 

cannot be simulated. Following these claims, it is necessary to examine the 

sentences to determine the causes of inconsistency and incorrect-consistent results. 

 

5.2.3. Causes of Inconsistency and Incorrect-Consistency 

In this experiment, consistent-incorrect (incorrectly classified in all tests) 

and inconsistently (sometimes correctly sometimes incorrectly classified) classified 

data lines obtained for w=14 and N=5000 parameters (which achieve the highest 

accuracy value in the preceding experiments) are examined by visually. Statistics 

of data lines used in this analysis are given in Table 5.6.  

 

Table 5.6 Statistics of the dataset for inconsistent and consistent-incorrect lines 
Class Count Ratio (%) 

Consistent-Incorrect 
Noise 137 56 

Normal 108 44 

Inconsistent 
Noise 2,551 57 

Normal 1,928 43 
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As seen in Table 5.6, analysis is applied in two groups: “Noise” and 

“Normal” for consistent-incorrect and inconsistent classifications. “Noise” labeled 

data lines consist of incorrect lemmatization performed by the morphological 

analyzer or incorrect tagging applied by the Expert. There can be two reasons for 

the incorrect lemmatization of the morphological analyzer. First reason is the 

outdated dictionary that morphological analyzer uses. This can lead to too many 

unnecessary (i.e redundant) lemma candidates in the parse outputs. The second 

reason is the parse lists provided by the morphological analyzer which include the 

roots and their corresponding lemma forms at the same time. This situation 

increases ambiguity. It can be frequently seen in the noun-to-noun and noun-to-

adverb derivations. For the first case, to give an example, “hava + NOUN” and 

“havalı + NOUN” parse candidates both have the same root and “hava” root is 

affixed by “-lı” derivational suffix. The morphological analyzer does not have any 

functionality to prevent the listing of the root when its lemma form exists as 

“havalı + NOUN” and “hava + NOUN” is also listed as a parse option. An example 

of the noun-to-adverb derivation is: “sabah + NOUN” and its adverb form can be 

given as “sabahleyin+NOUN”. They can both listed in the same parse output. For 

the “Noise” group, expert tagging errors can also be seen in the analysis outputs 

caused by fast data entry.  

In Table 5.6, the “Normal” group consists of the data lines in which 

morphological analyzer lists the correct parse candidates as lemmas and the expert 

tags the correct lemma with the correct POS tag.  The consistent-incorrect data 

lines in the “Normal” group represent the words with the same lemma and different 

POS tags. Correctly tagging of these kinds of words is sometimes very hard for 

even a native speaker of Turkish. For example, the word morphological analyzer 

lists “ilginç + NOUN” ve “ilginç + ADJ” lemma candidates for the word “ilginçti”. 

On the other hand, the “insufficient equation” problem is the main cause of 

inconsistent data lines in the “Normal” group.  
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5.2.4. The Effect of “Insufficient Equation” on Accuracy and COC 

 

In this experiment, the “insufficient equation” problem is analyzed, which 

is the main cause of inconsistency. Our observation is that the candidates which 

can be sometimes EQ+ or EQ- are consistent. Therefore, two different vocabulary 

lists are prepared, which consist of the correct and incorrect candidates in data lines 

calculated as their intersection. Common candidate count value is nearly 17% 

(which move two-way as EQ+ or EQ-) where the remaining 83% (37% are EQ+, 

46% are EQ-) are one-way. Some of the candidates which are in one-way equations 

also can be consistent. Thus we can introduce a hypothesize as “consistency can be 

guaranteed by candidates trained with a sufficient number of equations”. In the 

study, these kinds of candidates are mentioned as “fine-trained” candidates. To 

define these candidates and their positive effect on COC values, two parameters are 

created: the number of equations required to define a fine-trained candidate (#Eft), 

and the number of fine-trained candidates in the same equation (#Cft). Table 5.7 

gives the analysis results for the effects of four parameters (N, w, #Eft, and #Cft) on 

COC. 
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Table 5.7. Effects of fine-trained candidates on CoC with parameters window 

width and word-vector dimension (%) 

 w 2 10 14 18 

N 

        

                             

EFT  

CFT  

1 10 100 1 10 100 1 10 100 1 10 100 

2 

0 0.7 0.8 0.5 0 0 2.2 0 0 3 0 0 3.9 

1 0.5 0.6 0.7 0.6 1.6 7.3 0.6 2.2 8.5 1.2 2.4 8.3 

2 0.7 0.6 1.9 6 8 23.5 7.2 9.8 27.4 8 10.9 30.9 

3 0.6 0.5 0.8 11.7 16.3 84.4 12.1 17.1 79.2 14.7 20.9 87.9 

4 0.5 0.4 0 1.8 2.3 2.7 3.4 4.4 4.6 4.9 7 7.9 

20 

0 0.7 0.8 1.6 0.4 0.8 13.1 0 0.8 17.8 0 1.1 20.5 

1 1.7 1.8 4.4 2.3 4.6 18.9 2.9 5.9 23.3 3.6 8.5 27.6 

2 5 6.4 22.1 19.8 26.4 51.7 24.8 33.8 53.6 28 38 54.7 

3 9 12 42 25 34.3 100 29.4 40.8 100 31.7 44.1 100 

4 1.6 1.8 2.6 18.8 25 58.9 20.6 27.5 63 22.2 30.2 65.3 

200 

0 0.7 0.8 4.2 3.4 5.1 31.5 3.5 8.2 38 2.2 10.5 41.5 

1 1.2 2.1 4.2 8.7 15.2 39.9 12 23.2 48.1 10.54 29.7 51.5 

2 8.6 11.3 33 40.8 52.4 67.5 48.2 61.4 71.8 52.3 65.5 73.8 

3 16.6 22 72.9 40.8 53.7 100 46 60 100 48.4 62.1 100 

4 2.9 3.5 6.1 29.5 38.1 80.4 34.5 36.7 86.1 38.3 46.1 90.1 

2000 

0 0.7 0.8 15.1 5.2 15 51.1 6.2 21.5 55.6 6.8 27.5 57.9 

1 3.8 4.1 16.1 18.9 37.5 63.6 23.4 44.9 62.9 24.1 49.1 63.1 

2 23.9 32.0 68.7 62.3 76.5 86.2 65.7 78.8 83.9 67.9 79.1 81.6 

3 29.5 39.2 80 59 71.7 100 62.1 73.9 100 62.8 73.9 100 

4 24.6  31 93.9 49.2 57.1 100 50.9 58.5 100 50.6 55.4 100 

 

In Table 5.7, the optimum windows-sizes (w=10 and w=14) are used with 

a minimum (w=2) and maximum (w=18) values. It can be seen that the window-
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size is ineffective on COC values for window-sizes bigger than 10. This is also 

valid for low word-vector dimensions. But when high-number of equations (like 

#Eft>100) are used with high-dimension values (i.e. N=2000), fine-trained 

candidate count (#Cft) is proportional to COC values. This relation supports the 

idea that one-way candidates can be fine-trained in high-dimensions. But, 

sometimes, in some data-lines, fine-trained candidates may not exist and this leads 

to very low COC as 0.5% (and sometimes 0). This situation shows the positive 

effect of fine-trained candidates on consistency.  

When we examine the counts of data rows involved in training with Eft and 

Cft parameters we have seen that, for #Cft=0 and #Cft=1 data row count increases 

with the increase of Eft (1,10 and 100). Surprisingly, this is opposite for #Cft=2 and 

#Cft=3 and #Cft=4. Although data row counts decrease for these Cft values, COC 

values are higher when compared to #Cft=0 and #Cft=1.  Another case is, when the 

values of Cft=2 and #Cft=3 or Cft=4, for window-sizes 10,14 and 18, the data row 

counts decrease but COC values increase. This shows that fine-trained candidate 

counts which are high quality for classification can be obtained in window-sizes 

bigger than 10 even there are lower count of data rows. Also for high dimensions 

(such as 2000) low Cft values as 0 and 1 acquire higher COC values even when Eft 

gets higher, but their COC values cannot exceed 57.9% and 63.6%, respectively. 

Generally, low COC values can be seen for even high-dimensions provided 

with a high number of equations (#Eft>100). But it is important to have a higher 

number of equations that are greater than 100 (#Eft>100) to define a fine-trained 

candidate.  

As a result, when high word-vector dimension, optimum window-size and 

a high number of equations are used, high COC can be obtained with data lines that 

have 3 or 4 fine-trained candidates. 
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5.2.5. Effect of Dataset Size on Classification Accuracy and Consistency 

Due to the nature of languages, one ambiguous word can co-occur 

randomly with an unambiguous word in a sentence. It can be claimed that the 

“insufficient equation” problem can be overcome by enlarging the dataset. In order 

to test this hypothesis, the existing dataset is decreased randomly to simulate the 

dataset expansion. In this experiment, 5 subsets of data are created (including the 

main dataset) by using the “intersection filter” with a window-size 14. The train-

test cycle is applied for 100 repetitions and the accuracy and COC are examined. 

The results are given in Table 5.8. 

 

Table 5.8. The effects of the change in the amount of data on accuracy and CoC 

(%) 

No 
Corpus 

(#Sentences) 

Vocabulary 

(#Words) 
accuracyavg CoCft 

1   2,401 6,069 76.8 20.0 

2   4,802 7,181 81.5 37.9 

3   7,203 7,787 84.4 47.9 

4   9,604 8,300 84.9 51.9 

5 12,009 8,656 85.0 69.0 

 

Dataset versions given in Table 5.8 are obtained by randomly subtracting 

sentences from the novel and news texts to save the balance in the count and these 

are given in ascending order as word counts. For training and tests, N=200 word-

vector dimension and w=14 are used for their representative power on 

classification. Although it is hard to find common accuracy and COC values, 

#Eft>34 and #Cft=2 values are defined as optimums by searching #Eft in [1..100] 

and #Cft in [1..4]. 
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According to Table 5.8, it can be seen that when sentence count increases, 

COCft (which represents COC calculated only with fine-trained candidates) 

increases in accordance with the vocabulary. On the other hand, the increase in 

accuracyavg (S3) decreases. For this reason, it can be expected that, when the tagged 

dataset (more novel and more news text) is enlarged until full consistency is 

provided, higher accuracy values can be obtained.   

 

5.2.6. Consistency Analysis for all Window-Size Values and Dimensions 

In this section, the effect of parameters “window-size” and “word-vector 

dimension” on COC (S2) are given in graphical representations.  

Figure 5.1, shows the analysis results for the effect of the word-vector 

dimension on COC (S2) considering all window-size values used in the 

experiments. 
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Figure 5.1. COC analysis for different vector- dimensions on the same window-

size values  

 

As seen in Figure 5.1, COC values are low for the lower window-sizes. 

When word-vector sizes increase gradually, consistency value increases for all 
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window-size values. When the word-vector dimension is 2, the system acquires the 

worst COC results for all windows. The sharpest increase in COC is obtained by 

the experiments applied for the dimension range [20..200]. The COC value 

increase goes by the dimension range [200..2000]. Although the increase continues 

with the dimension value range [2000..5000], it can be seen that convergence 

occurs in this range. 

Figure 5.2 shows the similar results given in Figure 5.1, differently when 

the dataset is filtered with the “intersection filter”.   
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Figure 5.2. COC analysis for different word-vector dimensions on the same 

window-size values with “intersection filter” 
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In Figure 5.2, comments made for the Figure 5.1 are valid, except, filtered 

data provides little increase for all word-vector dimension values on different 

window-size values. Results are given in Figure 5.3 when the experiments are 

repeated for each window-size values for all word dimensions through [2..5000]. 
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Figure 5.3. COC analysis for different window-size values on the same word-

vector dimensions 
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 In Figure 5.3, for all word-vector dimensions, COC increases gradually till 

the window-size is 18. The COC value increase is sharp from w=2 to w=6. And 

from w=6 to w=18 increase is in a fixed ratio. From window-size w=18 to window-

size values w=22 and w=26, consistency slightly increases.  

When the datasets prepared and used for the tests in Figure 5.3 are filtered 

with “intersection filter”, results for the same experiments are given in Figure 5.4.   
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Figure 5.4. COC analysis for different window-size values on the same vector 

dimensions with “intersection filter” 

 

 In Figure 5.4, filtered datasets provide better results, when compared to the 

results given in Figure 5.3. COC values are near for window sizes 18, 22 and 26 

but there are little achievements. 

 In order to visualize the effect of filtered datasets with “intersection filter” 

on the system, experiments are performed for all combinations of window-size and 

word-vector dimensions. In Figure 5.5, for all word-vector dimensions, results are 

given when the filtered and original datasets are prepared for window-size 2.     
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Figure 5.5. COC analysis for window-size=2 on different word-vector dimension 

values with  original and filtered datasets 

 

In Figure 5.5, although there is little increase in COC values for the 

dimensions N=2, N=20, and N=200, these cannot be distinguished in graphics. 
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However, the increase in COC with the usage of the filter can be seen easily for the 

dimensions N=200 and N=5000.  

In Figure 5.6, for all word-vector dimensions, results are given, when the 

filtered and original datasets are prepared for window-size = 6.     

 

 

 
Figure 5.6. COC analysis for window-size=6 on different word-vector dimensions 

with original and filtered datasets 
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In Figure 5.6, although there is little increase in COC values for the 

dimensions N=2, N=20, and N=200, these again cannot be distinguished in 

graphics. For N=20 the increase in the last repetitions can be seen. However, the 

increase in COC with the usage of the filter can be seen easily for the dimensions 

N=200 and N=5000.  

In Figure 5.7, for all word-vector dimensions, results are given when the 

filtered and original datasets are prepared for window-size = 10. 
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Figure 5.7. COC analysis for window-size=10 on different word-vector dimensions 

with  original and filtered datasets 

 

In Figure 5.7, for N=20 and N=200, an increase in consistency is more 

evident when compared to the previous window-size values. The increase in COC, 
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with the usage of the filter, can be seen easily for the dimensions N=200 and 

N=5000. 

 In Figure 5.8, for all word-vector dimensions, COC results are given when 

the filtered and original datasets are prepared for window-size = 14. 

 

 

 
Figure 5.8. COC analysis for window-size=14 on different word-vector dimensions 

with original and filtered datasets 
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In Figure 5.8, for N=2, in the first repetitions, the increase in COC is 

evident. Dimensions N=20 and N=200 are not too much effective for this window- 

size to increase COC. Surprisingly, the increase in COC, for the highest dimension 

size N=5000 is very little.  

In Figure 5.9, for all word-vector dimensions, results are given when the 

filtered and original datasets are prepared for window-size = 18. 

 

 

 
Figure 5.9. COC analysis for window-size=18 on different word-vector dimensions 

with  original and filtered datasets 
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In Figure 5.9, results are similar to the results given for window-size 14 

except, for N=5000 the increase in COC is evident. In Figure 5.10, for all word-

vector dimensions, results are given when the filtered and original datasets are 

prepared for window-size = 22. 

 

 

 
Figure 5.10 COC analysis for window-size=22 on different word-vector 

dimensions with  original and filtered datasets 
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In Figure 5.10, for the first time, the lowest dimension N=2 shows 

distinctly the increase in COC for w=22. For N=20 and w=22 the filtered data 

effect is very little. On the other hand, in the last repetitions for N=200, the increase 

is evident and for N=2000 and N=5000 results are similar to the results given for 

window-size 18.  

In Figure 5.12, for all word-vector dimensions, results are given when the 

filtered and original datasets are prepared for window-size = 26. 
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Figure 5.11 COC analysis for window-size=26 on different word-vector 

dimensions with  original and filtered datasets 

 

In Figure 5.11, for N=200, N=2000 and N=5000 the highest gain for 

filtered datasets can be seen. But for these dimensions, it is clear that convergence 

slope is sharp.  
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5.3. Comparison Results with the Other Morphological Disambiguation 

Methods 

 

When preceding experiments are considered, it can be claimed that it is 

advantageous to use fine-trained candidates in training cycles. Because of this, the 

LWQ system is trained with data lines which include the fine-trained candidates. 

For comparison, accuracy results of this study in morphological disambiguation 

and the other studies that exist in literature with the highest achievements for 

Turkish language and similar languages are given in Table 5.9.       

 

Table 5.9. Accuracy values given in related studies for morphological 

disambiguation 

Method 
Accuracy 

(%) 
Language 

Orosz and Novák (2013) 95.81 Cz 

Muller and Schutze (2015) 96.83 Hu 

Hakkani-Tür et al. (2002) 95.07 

Tr 

 

Yuret and Ture (2006) 95.82 

Sak et al. (2007) 96.80 

Görgün and Yıldız (2011) 96.28 

Kutlu and Cicekli (2013) 93.40 

Yildiz et al. (2016) 96.28 

Shen et al. (2016) 97.24 

Dayanik et al. (2018) 96.86 

This Study 98.40 

 

Table 5.9 provides the accuracy values obtained in Turkish and 

morphologically similar languages like Hungarian and Czech. The values provided 

for Hungarian and Czech are selected from the highest values in the literature.  
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In early work in morphological disambiguation of Czech, Spoustová et al. 

(2007) have reported a 95.68% accuracy value by using the statistical methods 

combined with rule-based methods. Orosz and Novák (2013) present PurePOS 

which is a stochastic tagger and by using PurePOS they report 96.48% accuracy 

value. When they have used an input filter accuracy increases to 96.63%. Although 

this filter limits some input data, as we applied in this study, there does not exist 

any detailed analysis of its effect on accuracy. In Hungarian, most of the research 

uses the term “morphological tagging” instead of “morphological disambiguation”. 

One of these (Muller et al., 2013) provides the highest accuracy value by using the 

stochastic tagger named MarMot. They use second-order pruned CRFs and obtain a 

accuracy value of 96.57%. In their later study (Muller and Schutze, 2015), they 

have outperformed their previous study with a accuracy value of 96.83% by using 

the output of a morphological analyzer to reduce the lattice. This study also reports 

94.48% accuracy value for Czech. In Tkachenko and Sirts's (2018) study, they 

have proposed a multi-class neural model which again uses MarMot as tagger and 

they achieve the highest accuracy value for Czech as 95.81%, while 84.12% for 

Hungarian. 

Early studies on Turkish morphological disambiguation are mostly based 

on rule-based, statistical and hybrid models (Hakkani-Tür et al., 2002; Kutlu and 

Cicekli, 2013). The most prominent study (Hakkani-Tür et al., 2002) presents 

different n-gram models and trains these models with statistical information. The 

highest accuracy value reported in this study is 95.07% which is very near to the 

recent neural models’ achievements. 

According to Table 5.6, it can be seen that the state of the art accuracy 

values for Turkish are near to similar languages, Hungarian and Czech. For 

example, Yildiz et al. (2016) reach 96.28%, and Dayanik et al. (2018) obtain 

96.86%. Neural models are flexible and successful by presenting various 

embedding models and designs, but the necessity for large amounts of training data 

for the model and optimal parameter selection is a hard problem. One challenge in 
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the morphological disambiguation task of Turkish is to obtain fully supervised 

training datasets. The most successful studies (Yuret and Ture, 2006; Sak et al., 

2007; Yildiz et al., 2016) presented for Turkish use semi-supervised datasets 

without discussing the datasets’ quality. According to Table 5.6, the highest value 

ever reported for Turkish (and also for similar languages) is reported by Shen et al. 

(2016) as 97.24%. Our study has outperformed this study by 98.40% accuracy 

value when the “intersection filter” is used in the dataset with training parameters 

w=14 and N=200. Theoretically, when the noise level given in Table 5.6 is 

considered, if morphological analyzer and user errors are corrected, this accuracy 

value can be increased to 99.3% by a simple calculation (98.40% + 56% x 1.60%.). 
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6. CONCLUSIONS  

 

Morphological disambiguation is an important natural language processing 

(NLP) task for morphologically complex languages like Turkish. Although many 

studies present successful results by using various methods, dataset reliability and 

amount of data needed is a major concern. Using classification techniques in a 

vector-space for morphological disambiguation has not been studied in the 

literature, to our best knowledge. 

Motivated by this, in this thesis, we have focused on morphological 

disambiguation task by using a new classification method named Learning Word-

vector Quantization (LWQ). LWQ method is an adaptation of Learning Vector 

Quantization (LVQ) which is a well-known competitive machine learning 

algorithm. LVQ has been applied in many research fields. Although some of them 

are mainly on NLP problems, in our best knowledge, it has not been applied to any 

of the disambiguation tasks. Basically, LWQ locates the words as vectors in 

Euclidian space and optimizes the word-vectors with many training cycles. This 

optimization is provided by using a reward-or-penalize mechanism that is inspired 

by the original LVQ algorithm. In the study, the dataset is prepared from a 

standpoint that, “an ambiguous word in a text can be disambiguated by considering 

the neighbor words without ambiguity”. Datasets are prepared in a special format 

to separate the ambiguous words form unambiguous ones in two distinct 

vocabularies. Relationships between these vocabularies are used as equations 

which are used in approximating and departing the positions of the word-vectors.  

In the study, many experiments are performed to investigate the effect of 

the parameters: window-size and vector-space dimension on accuracy and 

consistency of classification. Also, in an experiment, it has been identified that 

increasing the dataset size increases the system consistency and classification 

accuracy by contributing to the count of fully-trained word-vectors. On the other 

hand, tagging errors are defined and proposals are made for the improvement of the 
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morphological analyzer. Finally, classification accuracy results are compared with 

similar studies in the literature presented for morphological disambiguation of 

Turkish.   

LWQ method handles the morphological disambiguation problem as a 

classification problem in order to identify the correct parse candidate of an 

ambiguous word in a text. This method is directly dependent on the quality of the 

data which should be tagged correctly by an expert. Also, a larger tagged dataset 

provides more accurate classification rates by providing more equations for 

training. It is obvious that accuracy value can be increased in future studies by 

conducting a significant number of experiments. LWQ method is language-

independent when the task is morphological disambiguation. We believe that it can 

be successful in less sparse languages other than complex languages with a low 

amount of data. On the other hand, it is applicable to word sense disambiguation 

(WSD) problem by taking advantage of the Euclidian space by mapping semantic 

information.  It is thought that the LWQ method, introduced as a new method to 

the literature, will give a different perspective to natural language processing 

(NLP) studies with different adaptations. 
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